
August 5, 1994

To the Graduate School:

This thesis entitled "A Reconfigurable Multiprocessor Architecture
and its Arithmetic Performance" and written by Mr. Kenneth B. Winiecki,
Jr. is presented to the Graduate School of Clemson University. I
recommend that it be accepted in partial fulfillment of the requirements
for the degree of Master of Science with a major in Computer
Engineering.

Thesis Advisor

We have reviewed this thesis
and recommend its acceptance:

Accepted for the Graduate School:

A RECONFIGURABLE MULTIPROCESSOR ARCHITECTURE

AND ITS ARITHMETIC PERFORMANCE

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Engineering

by

Kenneth B. Winiecki, Jr.

August 1994

ABSTRACT

A word-wide processing element ("PE") based on an existing 1-bit-

wide design is developed for a high-performance, massively-parallel,

rectangular-mesh-connected, globally-routed, reconfigurable, MSIMD

computer architecture. The PE can perform up to three operations per

instruction cycle (one transfer and two Boolean), and an instruction can

be executed in one clock cycle. It can communicate with up to four

other PEs and a global data router via three word-wide ports and two

bit-wide ports. Individual PE operation can be disabled by the

controller and conditionally by the PE itself. Carry-lookahead logic

facilitates fast full-addition/subtraction, and variable-shift registers

enable improved floating-point performance. Configurations of PEs are

developed to perform integer and floating-point arithmetic with various

methods and degrees of parallelism. Behavioral models of the PE and the

configurations are developed in the Verilog hardware description

language, and the performance of the configurations is observed. It is

found that the PE design facilitates significant parallelization of many

arithmetic operations, thereby producing appreciable speedup. The

success of this research indicates that this PE design should be further

considered for the basis of a high-performance computer architecture.

DEDICATION

This work is dedicated to my parents, Mr. and Mrs. Kenneth B. and

Mary Winiecki.

ACKNOWLEDGMENTS

I wish to acknowledge the support, friendship, and patience of my

advisor, Dr. W. B. Ligon, III, and of my colleagues, Mr. K. O. Wichmann,

Ms. L. L. Joiner, and Mr. D. C. Stanzione, Jr.

REFERENCES ... 247

TABLE OF CONTENTS

Page

TITLE PAGE ... i

ABSTRACT ... ii

DEDICATION ... iii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

INTRODUCTION ... 1

Background and Motivation 1
Objective and Tasks .. 9

THE PROCESSING ELEMENT ... 14

Overview ... 14
Memory-Register Architecture 15
Logic/Communication Architecture 18
Disable Architecture ... 31
Behavioral Model 33

ARITHMETIC PERFORMANCE ... 46

Overview ... 46
Integer Addition/Subtraction 55
Integer Multiplication ... 55
Integer Division ... 61
Floating-Point Representation 66
Floating-Point Addition/Subtraction 68
Floating-Point Multiplication 74

ANALYSIS ... 78

Overview ... 78
Integer Multiplication ... 79
Integer Division ... 82
Floating-Point Addition/Subtraction 85
Floating-Point Multiplication 86

CONCLUSION ... 90

APPENDIX ... 93

LIST OF TABLES

Table Page

I. Memory-Register Data Transfer Operations 17

II. Boolean Operator Generation 27

III. Carry-Word Computation Specifications 31

IV. Behavioral Model Program Files 54

V. FP Addition/Subtraction Operations and Signs 70

VI. Integer Multiplication Performance 79

VII. Integer Division Performance 82

VIII. FP Addition/Subtraction Performance 85

IX. FP Multiplication Performance 87

LIST OF FIGURES

Figure Page

1. Simplified Processing Element Architecture 14

2. Generalized Microinstruction Format 15

3. Memory-Register Architecture 16

4. Logic/Communication Architecture 18

5. Logic Operation Field Format 19

6. Communication Register Connection 22

7. CONDITION Register Format 23

8. Shift Control Subfield Format 24

9. Carry Control Subfield Format 29

10. Disable Control Field Format 32

11. Target MSIMD Multiprocessor Architecture 47

12. Alternate Multiprocessor Architecture 51

13. IEEE Standard Floating-Point Representations 66

14. Absolute Speedup of Integer Multiplication 80

15. Relative Speedup of Integer Multiplication 80

16. Absolute Speedup of Integer Division 83

17. Relative Speedup of Integer Division 83

18. Absolute Speedup of FP Multiplication 88

19. Relative Speedup of FP Multiplication 89

INTRODUCTION

Background and Motivation

The success of humanity as a species is attributable in large part

to its striving to exert control over its environment. Since control

requires feedback, and feedback is information, a critical factor in the

development of control is the development of the ability to process

information. Down through the ages, information processing tools were

continuously augmented: from the human brain alone, to counting-stones,

to written language, to the abacus, to the mechanical tabulating

machine, to the electrical adding machine, and finally, to the binary

electronic computer. However, the amount of environmental control

achieved by any of these improvements is only a minuscule portion of

what can be conceived and thus what is desired. This corresponds to the

fact that the amount of information that exists to be processed is

consistently far greater than mankind is able to process, a fact which

relentlessly drives the further improvement of information processing.

One of the current and most apparent manifestations of this drive

is the tremendous development in the area of computers. The technology

of computation equipment evolved from relays, to vacuum tubes, to

discrete transistors, to integrated circuits. Similarly, the

methodology of computing evolved from sequential processing to

simultaneous or "parallel" processing, this being the only means

available of increasing the processing of information, i.e., improving

processing performance, given a particular set of technological limits

2

at a particular time. Sequential processing is not the focus of this

research, and so is not further discussed here.

At one extreme, the simplest form of parallel processing is

"multicomputing", the simultaneous operation of multiple computers.

This obviously increases processing performance by solving multiple

independent problems simultaneously, and recently through the advent of

distributed operating systems, also addresses the solution of larger or

longer singular problems. At the other extreme is the form of

parallelism known as "pipelining", the parallel execution of the

multiple stages of a single processor instruction. This has the effect

of reducing a problem's execution time, thereby also addressing both

types of processing performance improvement. Today, pipelining is used

in virtually all high-performance processor designs. In between the two

extremes is the form of parallelism exhibiting the most diversity,

"multiprocessing". Multiprocessing has two meanings: the application

of multiple simultaneously-operating processors to a single problem

(regardless of the computer in which they reside), or the application of

multiple simultaneously-operating processors within a single computer

(regardless of the number of problems to which they are applied). The

former is a form of multicomputing, which is not the focus of this

research and so is not further discussed here; use of the term

multiprocessing hereafter refers to the latter.

Depending on the way multiple processors are applied, they can be

used to solve multiple small, independent problems and/or a large or

long singular problem. Forms of multiprocessing can be classified by

two characteristics: the number of simultaneous streams of

instructions, single or multiple, and the number of simultaneous streams

3

of data, single or multiple. This provides a total of four

classifications: single-instruction-stream / single-data-stream

("SISD"), single-instruction-stream / multiple-data-stream ("SIMD"),

multiple-instruction-stream / single-data-stream ("MISD"), and multiple-

instruction-stream / multiple-data-stream ("MIMD"). This classification

was introduced and discussed by Flynn [1].

SISD is useful for robustness, but the multiple processors provide

no increase in the processing performance of a problem over a single

processor since they all execute exactly the same operations on exactly

the same values. Of course, the remaining three classifications are

supersets of SISD, so they all have the potential to provide robustness.

MISD increases processing performance for problems that require multiple

operations to be executed on the same data elements, a somewhat rare

type of problem, judging by the lack of discussion found in the

literature. SIMD increases processing performance for problems that

require the same operation to be performed on different data elements, a

very common type of problem that includes scientific applications such

as fluid dynamics, engineering applications such as computer-aided

circuit design and development, artificial intelligence applications

such as pattern recognition, and general applications such as database

searching. The first major SIMD computer was the ILLIAC-IV [2], and

others that followed include the ICL DAP [3], Goodyear MPP [4], TMC CM-1

[5], and IBM GF11 [6]. Most of the architectures mentioned in this

paper are also discussed in [7]. The MIMD paradigm is the most

versatile; it is a superset of SIMD and MISD, and so has the potential

to increase the performance of the same types of problems. Because each

processor receives a separate stream of instructions, MIMD can also

4

support the processing of multiple small independent problems. There

are numerous subclassifications and examples of the MIMD paradigm, but

these are not the focus of this research and are not discussed here.

Unfortunately, the classification of paradigm is commonly obscured

by "hybridizing", where a system is designed with characteristics of

more than one paradigm. For one example, a processor could be designed

with an instruction which could, depending on some condition internal to

the processor, cause it to be disabled (or enabled). Since in the SIMD

paradigm different processors receive different data streams and can

therefore generate different internal conditions, a SIMD computer

constructed with this processor would have a MIMD characteristic in that

the conditions of some processors would allow them to be disabled while

the conditions of others would not, so all the processors would not be

executing the all the same instructions. In fact, this is the case with

all of the SIMD and MSIMD architectures mentioned here, the reason being

that real applications without data-dependent iterative processes are

exceedingly rare. Because of the universality of the MIMD-like disable

feature in otherwise-SIMD system designs, such systems are still

referred to as SIMD.

A second form of paradigm hybridizing is the distribution of

processor control among individual processors or subgroups of

processors. For example, a computer design could be based on the SIMD

paradigm but modified so that instead of the system controller directly

controlling all the processors, it controls a set of sub-controllers,

each of which controls a different sub-group of the processors.

Alternately, a computer design could be based on the MIMD paradigm but

modified so that instead of each processor controlling its own

5

execution, control is concentrated in a two-layer controller hierarchy

consisting of a single master controller and a number of slave

controllers which govern the operation of groups of processors. These

two designs describe the same system, one which exhibits SIMD behavior

within a processor group but MIMD behavior between groups. The

resulting paradigm could thus be termed multiple-single-instruction-

stream / multiple-data-stream ("MSIMD"), which is clearly another subset

of MIMD.

The flexibility provided by MIMD and MSIMD makes possible a unique

processing approach called "reconfigurability" or "multigauge

processing", where the number of processors working on one problem can

be changed for another problem, and the level of problem that can have

different configurations can be as small as a machine operation. For

example, if an application reaches a point where 2000 integers are to be

multiplied with 2000 other integers to produce 2000 results on a machine

with 4000 processors, and each processor can perform a multiplication

operation in 300 cycles, it is clear that the 2000 operations would be

performed in 300 cycles. However, if this machine somehow supports a

situation where every pair of processors is made to collaborate on a

single multiplication operation and perform it in 200 cycles, the 2000

operations could be performed in 200 cycles. On the other hand, if the

application instead calls for 3000 multiplication operations, then the

dual-PE "configuration" would require 400 cycles because it can only do

2000 at a time, while the singular-PE configuration would still require

only 300 cycles. Thus the ability to support different configurations

of PEs adds an opportunity to increase performance via a tradeoff

6

between the time required to perform an operation and the number of

simultaneous operations that can be performed.

Reconfigurability can be accomplished either through software,

i.e., the programming of each processor, or through hardware, by

switching processor interconnections. It can also be either dynamic,

i.e., able to change in the middle of a some predefined unit of

processing, or static, i.e., fixed for that unit of processing, although

this distinction is trivial for software reconfigurability. The concept

of reconfigurability was first developed by Kartashev [8][9], discussed

as multigauge processing by Snyder [10] and as reconfigurable mesh

computation by Miller [11], and evaluated by Ligon [12][13]. A number

of hardware-reconfigurable architectures have been developed, including

the CHiP [14], PASM [15], TRAC [16], NETRA [17], and PPA [18]. Hardware

reconfigurability is not a focus of this research, however, and so is

not further discussed here. There do not exist as many examples of

software reconfigurability, the two major ones being the Goodyear STARAN

[19] and TMC CM-2 [20]. In software reconfigurability, for example,

each processor could be programmed to execute the same instructions for

a particular set of instruction cycles, producing SIMD operation. Then

for the next set of instruction cycles, they could be programmed to each

execute different instructions, effecting a reconfiguration to produce

MIMD operation. Then for the next set of instruction cycles, they could

be programmed as if all the processors were divided into groups, and

each processor within a group executes a different instruction while

each set of corresponding processors from among the groups executes the

same instruction. This effects another reconfiguration, this time

7

producing SIMD behavior within a processor group but MIMD behavior

between groups, i.e., a MSIMD system.

Furthermore, depending on the processor design, reconfigurability

can be used as a means to two different ends: to affect the "precision"

used to compute an operation, and to affect the "method" used to compute

an operation. Precision reconfigurability is the ability to change the

maximum size of the variables of an arithmetic computation. For

example, say the processor was designed to be 1 bit wide, but a Boolean

inversion of a 32-bit value is desired. A single processor might have

to perform 32 sequential inversion operations to produce the result, but

if the processors were precision-reconfigured as described above to

operate in groups of 32 and the data was distributed appropriately among

the streams, the time required would only be that of a single bit

inversion operation. Note that this may require additional hardware

facilities to support shifting and carry-calculation as well as the

determination of conditions such as zero and overflow. Precision

reconfigurability is clearly the goal of 1-bit-wide processor systems,

and is an option for word-wide processor systems. Many of the systems

mentioned previously use precision reconfigurability with 1-bit-wide

processors: the ICL DAP, Goodyear MPP and STARAN, and TMC CM-1 and CM-

2, for example. Many others use it with word-wide processors: the

ILLIAC-IV, IBM GF11, TRAC, CHiP, and PASM.

Method reconfiguring is also called "capability" reconfiguring,

but this is somewhat ambiguous because reconfiguring both the precision

and the method affects the capability of the machine to perform a

particular amount of work in a particular amount of time. Method

reconfigurability, for example, might be used for floating-point value

8

normalization, which involves repeatedly shifting the mantissa left and

incrementing the exponent (for more details, refer to the section,

"Arithmetic Performance"). A single processor might have to perform

these two processes sequentially, but if the processors were method-

reconfigured as described above, one processor could perform the shift

while another simultaneously performed the addition. This may require a

small amount of overhead to first distribute the operands and then

collect the results into one PE, but more than likely it will reduce the

time required to perform the normalization operation.

Another way to classify multiprocessing systems is by

"granularity", the relative size of the smallest activity that can be

parallelized. Listed in order from "coarsest" to "finest", the

activities are: programs, subroutines, statements, expressions,

operations, instructions, and microinstructions. For example,

multicomputing is generally the parallelization of programs, and

pipelining is the parallelization of instruction stages or

microinstructions. In the SIMD and MSIMD paradigms, parallelization

generally occurs on the instruction level, and so finer-grained activity

is not directly controlled by the system. Unfortunately, the

classification of granularity is commonly obscured by the differing

amounts of activity that can be defined for an instruction. On one

extreme, for example, a processor could be designed to perform a high-

level language statement as an instruction, so a computer built of such

processors could equally be called statement-level SIMD and instruction-

level SIMD. Similarly on the other extreme, a processor could be

designed so that an instruction only performs the activity of a

microinstruction, so a computer built of such processors could equally

9

be called instruction-level SIMD or microinstruction-level SIMD. In

this case, solitary use of the term instruction-level SIMD is

meaningless.

Objective and Tasks

This research follows along the lines of the ICL Distributed Array

Processor ("DAP") [3], the Goodyear Massively Parallel Processor ("MPP")

[4], and the Thinking Machines Corporation Connection Machine ("CM-1")

[5] mentioned earlier. These are all massively-parallel, rectangular-

mesh-connected, precision-reconfigurable SIMD machines intended for

image processing (DAP and MPP), artificial intelligence (CM-1), and

other applications characterized by large arrays of homogeneous data.

SIMD operation is desirable for two reasons. First, the price of

MIMD's higher level of flexibility over SIMD is a higher level of

complexity, both of hardware and software, thus incurring higher cost

and a longer design cycle. Second, the processing of large arrays of

homogeneous data cannot take advantage of much of the additional

flexibility that MIMD can provide over SIMD, resulting in waste.

Precision reconfigurability is desirable because it facilitates

maximum resource utilization when processing sets of data that have

different precisions, thereby minimizing cost and maximizing flexibility

and performance. This is an important ability since the precision of

data elements such as pixel color is likely to differ from application

to application. For example, reconfiguring a system to reduce precision

could avoid the waste of processing power that would occur if the data

word of the processor ("processing element", or "PE") was wider than the

data element itself. A precision reduction could also produce a

performance gain if performing an operation with a larger number of

10

lower-precision steps required fewer clock cycles than performing the

same operation with a smaller number of larger-precision steps.

Clearly, ultimate precision reconfigurability is achieved using 1-bit

PEs, which all three of the machines do. 1-bit PEs have the additional

advantages of being simple, small, inexpensive, and fast.

A rectangular mesh (North-East-West-South or "NEWS")

interconnection topology is desirable because virtually all images are

composed of rectangularly-positioned elements. The DAP and MPP meshes

can be edge-connected via software to form a circular or spiral cylinder

or torus, while the CM-1 adds a completely separate daisy-chain

interconnection. The spiral and daisy-chain topologies support the view

of processing data as a bit-stream. Additionally, the CM-1 provides a

third completely separate interconnection topology in the form of a

multidimensional hypercube routing network with connections to each PE.

This accords it a level of flexibility far above that of the DAP or MPP.

In previous work by Ligon [21], a 1-bit PE was developed in an

attempt to improve upon the one used in the CM-1 [5]. Both PEs are

designed to perform two arbitrary Boolean functions of three variables,

but Hillis' uses two memory operands and one memory result and requires

3 clock cycles per instruction cycle, while Ligon's operates register-

to-register and requires only 1 clock cycle per instruction cycle, and

adds a separate interface so that a memory-register transfer operation

can be performed in parallel with the Boolean operations. In other

respects, i.e., connectivity and disabling, the PEs are similar since

the intended system architecture is the same. One relatively minor

exception is the omission of the daisy-chain connections from Ligon's

11

design, as it was intended that the mesh would be flexibly edge-

connectable in the manner of the MPP.

Since then, one major issue has become apparent. It was found

that a large number of popular SIMD applications required floating-point

arithmetic. This was not anticipated by TMC, and it served to highlight

the CM-1's inadequate floating-point performance. Although the MPP

predated the CM-1, it performed floating-point arithmetic much faster

because each "1-bit" PE included a 30-bit variable-shift register. TMC

attempted to rectify this in the CM-2 by restructuring the system to

accommodate an optional floating-point package consisting of 2048 sets

of off-the-shelf 64-bit floating-point coprocessors and custom 32 x 32-

bit transposers, one set for every group of 32 PEs [20]. The success of

this solution, however, was diminished somewhat by its increased cost

and complexity. It also encouraged the programmer to view the CM-2 as a

collection of 2048 word-wide PEs instead of 64K 1-bit PEs. These two

factors, along with vast improvements in microprocessor price per

performance ratio, subsequently compelled TMC to abandon the custom 1-

bit PE and floating-point support hardware, adopt markedly less

expensive off-the-shelf 64-bit microprocessors to accompany the

floating-point coprocessors, increase the number of processors to 16K,

and switch to the MIMD paradigm. Thus was produced the CM-5 [22].

Subsequent work by Ligon evaluating reconfigurability [12][13]

revealed a possible alternate evolution for the massively-parallel,

rectangular-mesh-connected, globally-routed, precision-reconfigurable

SIMD architecture.

1. Give the programmer the more natural word-wide view by using
word-wide PEs (sacrifice precision-reconfigurability to do
so).

12

2. Retain the simplicity, small size, low cost, and speed of
Ligon's 1-bit PE by designing a word-wide PE based on the
same architecture.

3. Facilitate fast integer and floating-point arithmetic by
providing the PE with carry-lookahead logic and variable-
shift capability.

4. Increase the general opportunity for parallelism and
facilitate additional speedup of arithmetic operations by
providing method-reconfigurability.

5. Retain as much of the simplicity and low cost of the
rectangular-mesh-connected, globally-routed, SIMD system
architecture as possible by adopting the MSIMD paradigm.

The objective of the research presented in this paper is to

evaluate the efficacy of these architectural characteristics for

producing efficient sequential arithmetic operations and facilitating

the parallelization and speedup of such operations. The tasks are to

first design and model the PE, then design and model configurations of

PEs for performing some common arithmetic operations, and finally obtain

and analyze the performance results. These tasks are accomplished by

modeling the behavior of the PE and configurations in the Verilog

hardware description language ("Verilog HDL").

The remainder of the text is organized into four sections. The

following section entitled "The Processing Element" describes the design

and modeling of the PE. The section entitled "Arithmetic Performance"

details the design, modeling, and performance of configurations of 1, 2,

4, and 8 PEs applied to integer multiplication and division and

floating-point addition/subtraction and multiplication for both 32- and

64-bit data word widths. It also discusses the evolution of the PE

design and how it was driven by the development of the configurations.

The Analysis presents the performance results in various tabular and

graphical forms and provides additional discussion. Finally, the

Conclusion summarizes the research and presents possible directions of

13

future work. Following the text are the Appendix, containing complete

Verilog program listings and sample output, and the List of References.

THE PROCESSING ELEMENT

Overview

The PE consists functionally of four major elements: a memory, a

register set, and two logic units. The elements all have bit-widths

equal to that of the data word ("W"), and they are controlled by signals

which make up the microinstruction. Data communication is done through

special registers. The arrangement is illustrated in Figure 1.

Memory Register
Set

Logic
Unit

Logic
Unit

Data

Micronstruction

Figure 1. Simplified Processing Element Architecture

The PE can perform up to three tasks in a microinstruction cycle:

one memory-register transfer operation, and two register-register

logic/communication operations. The simplicity of this design allows

the microinstruction to be executed in one clock cycle, providing one of

the major advantages of this architecture.

15

The PE microinstruction reflects the simplified architectural

view. It is divided into three major fields governing the memory,

logic/communication, and disable functions, as depicted in Figure 2.

03442 4165

Memory Operation Field

Logic Operation Field

Disable Control Field

Bit Position

Figure 2. Generalized Microinstruction Format

As shown in the figure, the microinstruction is 66 bits wide: 46

for control signals and 20 for PE memory addressing. The memory address

width is arbitrary; 20 bits is shown here merely for purposes of

illustration. For the same reason, W (the data word width) is 32 bits,

making the PE memory size 4 MB, or 1 MW.

The three subsections immediately following describe the PE

architecture using the organization just presented: first memory, then

logic, and finally disable. This section then concludes with a

subsection detailing the behavioral model of the PE. Usage of the PE is

presented in the next section, "Arithmetic Performance".

Memory-Register Architecture

Memory operation is straightforward. All memory interactions take

place through data paths of width W, and with only three registers of

the register set, the main registers IN1, IN2, and OUT; this design was

intended to keep the implementation as simple as possible. Data

transfer is controlled by four bits in the Memory Operation Field, with

the remainder of the field comprising the memory address.. This

arrangement is shown in Figure 3.

16

65

Memory Address Bits

Transfer Source Bit

Memory Destination Bit

Register IN1 Destination Bit

Bit Position

Register IN2 Destination Bit

4243444546

Memory Registers

IN1

IN2

OUT

Word-Wide Memory Bus

Figure 3. Memory-Register Architecture

The data transfer control bits consist of one source and three

destination specification bits. The Transfer Source Bit selects between

the two possible data sources that can be latched onto the bus: the OUT

register is indicated by a 0, and memory is indicated by a 1. The

latching of the bus input is timed to occur before any possible

modification of the OUT register by other PE activity during the

microinstruction cycle. The three destination bits determine which

units will subsequently latch the data off of the bus: memory is

indicated by setting the Memory Destination Bit, the IN1 register is

indicated by setting the Register IN1 Destination Bit, and the IN2

register is indicated by setting the Register IN2 Destination Bit. The

latching of the bus output is timed to occur after any possible use of

the IN1 and IN2 registers by other PE activity during the

microinstruction cycle.

17

One feature of this design is the ability to specify multiple

destinations for the data, thereby allowing a certain form of parallel

data transfer. The related ability to specify no destinations provides

the mechanism for a null memory operation (memory "NOP"). The

microinstruction architecture also appears to permit memory to be

specified as both a source and a destination, but because memory is not

expected to be fast enough, such a specification is ignored. A

comprehensive list of memory-register data transfer operations consists

of 11 entries, and is presented in Table I.

The architecture described supports direct addressing. To be able

to write widely-applicable microprograms, however, some form of indirect

addressing is required. No such ability is included in this PE design

because it is not needed for the exploration of arithmetic performance,

but the intention is that it should be added eventually.

Table I

Memory-Register Data Transfer Operations

Memory
Address

Transfer
Source

Memory
Destination

Register IN1
Destination

Register IN2
Destination Description

1

0

0
1

1
0

0

1

1

0
1

NOP

OUT -> IN2
OUT -> IN1
OUT -> IN1, IN2

OUT -> mem[addr]
OUT -> IN2, mem[addr]
OUT -> IN1, mem[addr]
OUT -> IN1, IN2, mem[addr]

mem[addr] -> IN2
mem[addr] -> IN1
mem[addr] -> IN1, IN2

0

0
0
0

1
1

1
1

x
x
x

0

x

0

0

0

0

0

0

1

1
1

0

0

1
1

0
0

1
1

0

1
1

<addr>

x

x
x
x

<addr>

<addr>

<addr>

<addr>

<addr>
<addr>

18

Logic/Communication Architecture

The register set consists of 20 word-wide elements: three main

registers (IN1, IN2, and OUT), five communication registers (ROUTER,

NORTH, SOUTH, EAST, and WEST), ten general-purpose registers (R0 - R9),

a DISABLE register, and a CONDITION register. Two Boolean logic units

and three special-purpose logic units complete the logic/communication

architecture. The configuration is shown in Figure 4, sans control

signals.

IN1

IN2

OUT

ROUTER

R0

R9

NORTH

EAST

WEST

SOUTH

DISABLE

CONDITION

Communication Ports

Operators

1-bit wide

word-wide

Logic
Unit

Logic
Unit

 Registers

Figure 4. Logic/Communication Architecture

19

General operation proceeds as follows. The two Boolean logic

units are each presented with four sources of data: the two main input

registers (IN1 and IN2), the selectable source register, and the

respective operator (from the microinstruction). One logic unit outputs

its result to a selectable destination register; the other, to the main

output register (OUT). Finally, condition flags are set in the

CONDITION register. Communication takes place with four neighboring PEs

(connected in the common rectangular-mesh fashion) and a global data

router through designated "communication" registers; in general, loading

from one actually loads from its corresponding input port, while storing

to one makes the data accessible outside the PE through its

corresponding output port. Certain useful functions that are beyond the

capabilities of the Boolean logic units, namely shifting, carry-word

computation, and disabling, are performed by special-purpose logic

units.

The Logic Operation Field shown generally in Figure 2 consists of

six subfields: Carry Control, Source Register, Shift Control, Register

Operator, Destination Register, and OUT Operator. This format is

depicted in Figure 5.

1516232432 3135

Shift Control

Register Operator

Destination Register

OUT Operator

Bit Position

Source Register

1112

Carry Control

41 36 4

Figure 5. Logic Operation Field Format

20

The logic/communication function is best explained in a different

order than is presented by the Logic Operation Field. Therefore, the

register set is discussed first, along with the Source and Destination

Register subfields. This is followed by a discussion of the shifting

function and the Shift Control subfield. The logic function and the

Register and OUT Operator subfields are discussed next. Lastly, a

discussion of carry-word computation along with the Carry Control

subfield is presented.

Register set and specification. The Source and Destination

Register subfields shown in Figure 5 each consist of four bits

containing the encoded identity of the desired selectable source or

destination register. As indicated by the positions of the bus symbols

in Figure 4, 16 of the registers are designated "selectable": the five

communication registers, the ten general-purpose registers, and the

DISABLE register. Note that the Destination Register subfield is only

large enough to specify a single register, although the architecture

could easily support multiple destinations at the expense of a wider

microinstruction. The particular assignment of bit codes to registers

can be seen in the discussion of the behavioral model as well as in the

parameter section of any module program, all of which appear in the

Appendix.

The choice of the number of general-purpose registers was not

completely arbitrary. To be able to select the five communication

registers and the DISABLE register, at least three bits are required.

This provides eight codes, leaving two unused which can be assigned to

general-purpose registers. However, two registers are not enough to

allow efficient microprogramming; adding one more bit, for a total of

21

four, adds eight more codes, allowing for up to ten general-purpose

registers. This has been found to be adequate for the programs required

for this research. Should requirements change in the future, the

simplicity of this design enables easy modification.

The communication registers are named for the "direction" that the

data comes from when it is read. Note this is opposite of the direction

that the data is made available to when it is written. For example, a

PE's EAST register input port would be connected to its easte rn

neighbor's EAST output port, but the same PE's EAST output port would be

connected to its western neighbor's EAST input port. This can initially

be confusing, so Figure 6 is presented for clarification. It depicts

five PEs, with the center one fully connected to its four nearest

neighbors. It is implied that all data paths originate from a single

output port and terminate at a single input port.

It can be seen from Figures 4 and 6 that the communication

registers are connected differently than the general-purpose registers.

The ROUTER, NORTH, and SOUTH registers behave as previously described

for general communication, and they provide word-wide input and output

ports. The EAST and WEST registers, on the other hand, only behave

traditionally when stored to; when loaded from, their data is modified

before reaching the logic units. Also, they only have 1-bit input and

output ports; the EAST output port consists of the EAST register's most

significant bit ("msb"), and the WEST output port consists of the WEST

register's least significant bit ("lsb"). The EAST and WEST registers

will be discussed in greater detail with the Shift Control subfield.

22

NORTH

SOUTH

WEST

EAST

NORTH

SOUTH

WEST

EAST

NORTH

SOUTH

WEST

EAST

NORTH

SOUTH

WEST

EAST

NORTH

SOUTH

WEST

EAST

1-bit-wide

word-wide

PE

Figure 6. Communication Register Connection

As indicated by Figure 4, the CONDITION register is not a

selectable register, nor even readable by the PE; it is only directly

accessible outside the PE by the controller. The structure of the

CONDITION register is depicted in Figure 7.

The meanings of the condition flags is relatively straightforward.

Flags with designations beginning with "Register" indicate the state of

23

the last selectable destination register used by the PE; flags beginning

with "OUT", "IN2", and "IN1" indicate the respective states of the main

registers. Thus the controller can monitor the results produced by the

logic units as well as the data transferred from memory to registers.

Flags with designations ending with "MSB" mirror the contents of the

most significant bit position of their respective registers, and are

thus useful in observing the signs of signed values and the results of

comparisons, as well as examining other bits when coupled with shifting

or rotating. Flags ending with "Zero" use a 1 to indicate when all of

the bit positions in their respective registers are 0, and are also

useful to monitor the results of comparisons.

4568 79

IN1 MSB

IN1 Zero

Disable

Carry

Bit Position

IN2 Zero

IN2 MSB

0123

Register MSB

Register Zero

OUT MSB

OUT Zero

(unused)

Figure 7. CONDITION Register Format

The Carry flag indicates that a carry-out was generated by the

last carry-word computation performed, and the Disable flag indicates

that the logical value of the DISABLE register is 1 (that is, the

24

numerical value is not 0). The DISABLE register operates like a

general-purpose register, but its contents have a special effect on the

operation of the PE. The Carry flag is discussed with the Carry Control

subfield, and the Disable flag and DISABLE register are discussed later

with the Disable Control Field of the microinstruction.

Shifting function and specification. The second subfield, Shift

Control, actually contains two subfields of its own: Input Source and

Shift Quantity. This is shown in Figure 8.

30 2931

Input Source

Shift Quantity

Bit Position24

00

01

10

11

Constant 0

Constant 1

Input Port

Output Port

Input Source

Code Meaning

Figure 8. Shift Control Subfield Format

Shift Quantity contains the number of bit positions by which the

data from the EAST or WEST registers will be shifted before it reaches

the logic units. From Figures 4 and 6, it can be seen that the data

paths coming from the EAST and WEST registers and going to the main

logic units pass through special-purpose logic units, namely variable

shift units such as barrel-shifters. The Shift Quantity affects only

these shifters, and so has no effect if neither EAST nor WEST is

selected as the source register. The shifters can shift between 0 and W

bit positions (inclusive) at one time; the EAST shifter shifts left

25

(westward, or lsb-to-msb), and the WEST shifter shifts right (eastward,

or msb-to-lsb).

All the bit spaces shifted in assume the same value, the one

specified by the Input Source subfield. As can be seen from Figure 8,

the possible input sources consist of the constants 0 and 1, and the

register's own input and output ports. If one of the constants is made

the source, that value will be shifted-in the number of times specified

by the Shift Quantity. If the register's input port is made the source,

then by sequentially performing W 1-bit shifts, a PE can transfer an

entire data word to its east neighbor and from its west neighbor, or

vice versa. If the register's own output port is made the source, a 1-

bit shift will produce a 1-bit rotate. Note that in the latter two

cases, a Shift Quantity greater than 1 does not result in a complete

data transfer because all shifted-in bit spaces will assume the same

value as the first. Also of note is the fact that a Shift Quantity of 0

causes the shiftable registers to behave no differently than general-

purpose registers, i.e., no communication occurs.

The abilities to shift and rotate are important not only as basic

logic functions, but also as means of achieving parallelism on the

algorithmic level; this will be seen later. Only allowing a single

register the ability to shift a single direction is a natural extension

of the view of a word-wide PE as a collection of 1-bit-serial PEs.

However, it also provides a convenient basis for a very simple yet

efficient design. The concept was retained in order to investigate its

usefulness.

To shift all of the bit positions in a 32-bit-wide data word, the

Shift Quantity subfield only needs 5 bits. However, if W is 64, 6 bits

26

are needed, and for reasons discussed later concerning the flexibility

of the model, this design has 6 bits and simply ignores one. In a real

implementation, this should not be the case.

Logic function and specification. The Register and OUT Operator

subfields contain coded representations of the Boolean functions that

are to be performed by the main logic units on the three register

values. The logic units are simply banks of W "1-of-8" multiplexers.

For any value of an index "i" between 1 and W inclusive, the ith

multiplexer uses the ith bit from each of the main input registers IN1

and IN2 and the source register specified by the microinstruction, to

output one of the eight bits of the operator. Thus the operator is

nothing more than the result column of a truth table for the desired

Boolean function of (up to) three variables. Additionally, the Register

MSB, Register Zero, OUT MSB, and OUT Zero condition flags are set in the

CONDITION register when the outputs of the Boolean logic units become

available.

As an example, suppose the IN2 register had previously been loaded

from memory, and it was now desired to store it in one of the selectable

destination registers, and furthermore to compute the exclusive-or ("^")

of IN1 and one of the selectable source registers, and store that result

to the OUT register for later transfer to memory. The truth table for

the desired functions, which automatically yields the desired operators,

would be constructed as shown in Table II.

Continuing the example, assume bits 31 of IN1, IN2, and the source

contained 1, 0, and 1, respectively. One of the 32 multiplexers forming

the selectable-destination logic unit would receive 1, 0, and 1 on its

control lines and 11001100 (the bit sequence shown in the "Function:

27

IN2" column of Table II) on its input. 101 has a decimal value of 5, so

the multiplexer would latch bit 5 of its input, which is a 0, to its

output, which is bit 31 of the word going to the selectable destination

register. Notice that since bit 31 of IN2 is 0 and bit 31 of the result

is 0, the Boolean identity function IN2 is demonstrated. Similarly, the

input to the OUT destination logic unit is 01011010, and the multiplexer

having 1, 0, and 1 on its control lines will latch bit 5 of the input, a

0, to its output, bit 31 of the value going to the OUT register. Notice

similarly that since bit 31 of IN1 is 1, bit 31 of the source register

is 1, and bit 31 of the result is 0, the Boolean exclusive-or function

IN1 ^ SRC is demonstrated. This concludes the example.

Table II

Boolean Operator Generation

0 0 0
0 0 1
0
0

1

1
1

1
1

1
1

0

0

0

0

1

1

1 0

IN1
Bit

IN2
Bit

Source
Bit

Selectable
Destination

Operator

OUT
Destination
Operator

0
0
1
1

1
1

0
0

Function:
IN2

Function:
 IN1 ^ SRC

0

0
1

1

1

0
1

1 0

0

2
3

4
5
6
7

1

Bit
Number

Given that exactly eight bits are required to describe any Boolean

function of up to three variables, it is clear that there are exactly

28

256 such functions. Of those, at least 39 are interesting enough to

merit names. The exact nature of the functions can be seen in the

parameter section of any configuration module program, all of which

appear in the Appendix.

Also, while the particular order of the bits or the sequence of

the registers is not important to the creation of a truth table, those

characteristics must necessarily be fixed in the design, and so care

must be taken to generate operators with those characteristics. It may

be of interest to note that the bit positions and register sequence

depicted in Table II are those that were selected for the design that

was modeled.

Carry-word computation and specification. The architecture has

been provided the ability to perform a full addition or subtraction in

two microinstruction cycles. The method involves computing a carry-word

with the two operands in the first cycle, and then performing the

Boolean addition of the operands and the carry-word in the second cycle.

The Boolean addition of three operands is a straightforward

application of an easily-generated operator to the Boolean logic units.

The computation of the carry-word is achieved with a special-purpose

logic unit -- a carry-lookahead unit. To keep the operation and

implementation of the PE as simple as possible, the carry-lookahead unit

has inputs fixed to the main input registers IN1 and IN2, and uses the

same output path as the selectable-destination Boolean logic unit.

Therefore, the (selectable-destination) carry-word computation and the

selectable-destination Boolean operation are mutually exclusive. This

can be observed in Figure 4. Alternatively, the output of the carry-

lookahead unit could be designed to be fixed to a particular register,

29

call it the CARRY register, in order that the selectable-destination

Boolean operation not be sacrificed. However, since the CARRY register

would have to be selectable as a source, the number of general-purpose

registers would be reduced to nine. Since it is unclear which if either

scheme is better, the choice was made arbitrarily with the intent of

studying its effect.

The flexibility designed into the carry-lookahead unit is one of

the powerful features of this architecture. The operation of the unit

is governed by the Carry Control field shown in Figure 5. It consists

of 6 1-bit subfields: Use IN1, Use IN2, Invert IN1, Invert IN2, Use

Absolute Carry-In, and Carry-In Value. This format is depicted in

Figure 9.

36373840 3941

Invert IN1

Invert IN2

Use Absolute Carry-In

Carry-In Value

Bit Position

Use IN2

Use IN1

Figure 9. Carry Control Subfield Format

Setting the Use IN1 bit causes the carry-lookahead unit to use the

value of the main input register IN1 in the computation of the carry-

word; Use IN2 functions similarly. Having separate controls for IN1 and

IN2 provides part of the means to perform simple and efficient increment

operations. It also provides the means to determine which output to

30

enable and which to disable; if neither Use IN1 nor Use IN2 is set, the

Boolean logic unit output is enabled, and the carry-lookahead unit

output is disabled. Setting Invert IN1 causes the carry-lookahead unit

to use the inverse of the value of IN1 in the computation of the carry-

word, if and only if its use was specified by the setting of Use IN1;

Invert IN2 functions similarly. This provides the means to perform

simple and efficient subtraction and negation operations.

Setting Use Absolute Carry-In causes the carry-lookahead unit to

obtain the value for the carry-in from the adjacent Carry-In Value bit

of the microinstruction; otherwise, it is obtained from the Carry flag

of the CONDITION register, which can be seen in Figure 7. This provides

the means to perform multi-precision arithmetic, as well as the

increment operations mentioned earlier. The Carry flag is set by the

computation of the carry-word; when a carry-word is not being computed,

the Carry flag is not affected. This allows the controller the freedom

to not perform the subsequent Boolean addition or subtraction operation

immediately following the carry-word computation, which can be useful in

obtaining maximum economy of cycles.

There are 64 combinations of specifications for the Carry Micro-

Operation Field, of which 23 are distinct. These are listed, usefulness

aside, along with the algebraic significance of the carry-words

generated, in Table III.

Note that a single-register increment can be specified, but a

single-register decrement cannot. However, a decrement on a single

register is possible if the other register can be made to contain 0. In

that case, specifying a zero carry-in value causes the 1s-complement of

0 to be added instead of the 2s-complement, i.e., —1 in 2s-complement.

31

Table III

Carry-Word Computation Specifications

Use
IN1

Use
IN2

Invert
IN1

Invert
IN2

Use Carry-
In Value

Carry-In
Value

0 0 x x x x

0
0

0
0

0

1
1

1
1

1

1
1

1

1

1
1

1
1
1

1

1
1

1
1

1
1
1

0
0

0
0
0

1
1
1

1
1

1

1

1
1

1

1
1

x
x

x
x
x

0
0

1
1
1

0
0
0

0
0
0

1
1
1

1

1
1

0
0

1
1
1

x
x

x
x
x

0
0
0

1
1
1

0
0
0

1

1
1

0
1

0
1
1

0
1

0
1
1

0
1
1

0
1
1

0
1
1

0

1
1

x
1

x
0
1

x
1

x
0
1

x
0
1

x
0
1

x
0
1

x
0
1

no operation

IN2 + C
IN2 + 1

- IN2 - 1 + C
- IN2 - 1
- IN2

IN1 + C
IN1 + 1

- IN1 - 1 + C
- IN1 - 1
- IN1

IN1 + IN2 + C
IN1 + IN2
IN1 + IN2 + 1

IN1 - IN2 - 1 + C
IN1 - IN2 - 1
IN1 - IN2

IN2 - IN1 - 1 + C
IN2 - IN1 - 1
IN2 - IN1

- IN1 - IN2 - 2 + C
- IN1 - IN2 - 2
- IN1 - IN2 - 1

Algebraic
Significance

Disable Architecture

The last feature of this architecture to be discussed is the

ability to selectively disable individual PEs based on their state. For

even greater flexibility, this control is provided to both the PE and

the controller. Such a capability is outside of the strict definition

of SIMD, but is important in providing the flexibility necessary to

32

implement many useful forms of algorithmic parallelism. Take for

example the iterative process of value normalization required for

floating-point addition and subtraction operations. The values

contained in different PEs are more than likely to require a different

number of iterations to reach a normalized state. Allowing some PEs to

perform more iterations than others means prohibiting some PEs from

performing unwanted iterations, and one way to accomplish that is to

disable those PEs.

The architecture of the disable control system consists of two

components: the logical value of the DISABLE register that appears in

Figure 4, which is accessible by the PE directly and by the controller

through the Disable condition flag of the CONDITION register, and the

control signals embedded in the Disable Control field of the

microinstruction. The field contains four signals, and these are

depicted in Figure 10.

0123

Allow Logic Disable

Invert Logic Disable

Allow Memory Disable

Invert Memory Disable

Bit Position

ALD & (ILD ^ DIS) = Disable Logic Operation

AMD & (IMD ^ DIS) = Disable Memory Operation

Figure 10. Disable Control Field Format

Figure 10 also shows the Boolean equations for the disable

functions, which operate as follows. If the Allow Logic Disable bit is

33

set, and either the DISABLE register contains a 1 and the Invert Logic

Disable bit is 0, or the DISABLE register is 0 and the Invert Logic

Disable bit is 1, then the outputs of the two Boolean logic units and

the carry-lookahead unit will be disabled, as well as the setting of the

two Register, the two OUT, and the Carry condition flags in the

CONDITION register. Similarly, if the Allow Memory Disable bit is set,

and either the DISABLE register contains a 1 and the Invert Memory

Disable bit is 0, or the DISABLE register is 0 and the Invert Memory

Disable bit is 1, then the latching of the memory bus into the IN1 and

IN2 registers and the memory is disabled, as well as the setting of the

two IN1 and the two IN2 condition flags in the CONDITION register.

The significance of these functions lies in the cooperative nature

of the disable control between the controller and the PE itself. In

effect, the controller allows disabling to be possible, and then the

controller and the PE cooperate to determine whether or not the PE

should be disabled. This is a very flexible and powerful feature, and

makes a variety of parallelization schemes possible. Some of these can

be seen in the PE configuration experiments presented in the section

following this one, "Arithmetic Performance".

Behavioral Model

The PE and configurations are modeled in the Verilog HDL partly

because of its availability, partly because it was recommended, and

partly because of its purported resemblance to the already-familiar C

programming language. The choice turned out to be satisfactory,

especially for modeling parallel tasks and allowing precise accounting

of clock cycles. A good description of Verilog appears in the

introduction of the Verilog-XL Reference Manual [23].

34

The Verilog Hardware Description Language ("HDL") describes a
hardware design or part of a design. Descriptions of designs in
the Verilog HDL are Verilog models. The Verilog HDL is both a
behavioral and structural language. Models in the Verilog HDL can
describe both the function of a design and the components and
connections to the components in a design.

....

The basic building block of the Verilog HDL is the module. The
module format facilitates top-down and bottom-up design. A module
contains a model of a design or part of a design. Modules can
incorporate other modules to establish a model hierarchy that
describes how parts of a design are incorporated in an entire
design. The constructs of the Verilog HDL, such as its
declarations and statements, are enclosed in modules.

The Verilog HDL behavioral language is structured and procedural
like the C programming language. The behavioral language
provides the following capabilities:

• structured procedures for sequential or concurrent execution

• explicit control of the time of procedure activation
specified by both "delay" expressions and by value changes
called "event" expressions

• explicitly named events to trigger the enabling and
disabling of actions in other procedures

• procedural constructs for conditional, if-else, case, and
looping operations

• procedures called "tasks" that can have parameters and non-
zero time duration

• procedures called "functions" that allow the definition of
new operators

• arithmetic, logical, bit-wise, and reduction operators for
expressions

Further information about Verilog can be found in [23];

unfortunately, no adequate tutorials nor better references can be

recommended at this time.

The model of the PE is behavioral, and it models the PE exactly as

previously described. It evolved through at least five versions, the

last one of which is named "pe4". It resides in the UNIX Verilog file

35

"pe.v" which is reproduced in the Appendix, and pertinent sections

appear below with the text.

Module "pe4" consists of a single module with no submodules. The

first statement is the module declaration, and it contains a list of the

input and output port declarations.

module pe4
 (p_clock, p_reset, p_instr, p_flags,
 n_in, s_in, e_in, w_in, r_in,
 n_out, s_out, e_out, w_out, r_out,
 m_clock, m_write, m_addr, m_in, m_out,
 dump_reg, dump_mem);

This statement simply declares that the ports exist; it does not

define what they are. The port definition statements normally follow

immediately after the declaration, but in this case some of the

definitions are dependent upon parameters which must be defined first.

parameter // Defaults, should be overridden by instantiating module:
 ADDR_WIDTH = 10, // width of PE memory address, in bits
 WORD_WIDTH = 32, // width of PE data word, in bits
 MEM_LENGTH = 1024, // length of PE memory, in words
 PE_NAME = "undefined"; // name of PE for dump identification

It must be mentioned that two methods of interfacing to the module

are used: direct object access, and ports. All data objects in an

instance of a module can be accessed directly by the instantiating

module, so ports are technically not required. However, ports are used

in this module to support better programming style, since the PE design

has them. The parameters defined above describe special features of the

module that are not features of the PE itself but that provide great

flexibility. For example, while having a single data object that

defines the PE's data word width is convenient, having the ability for

the instantiating module to arbitrarily set it is much more so.

Additionally, it is distinctly simpler to access data directly, and with

features that are not part of the PE design, there is no reason not to

36

do so. Since the values of the parameters can be set externally, the

ones used in the PE module merely serve as defaults and examples. Note

that the MEM_LENGTH parameter is an unfortunate necessity; surprisingly,

Verilog has no exponent, root, or logarithm functions, and so there is

no way to calculate the length of the PE memory from the width of its

address, which in the default case here would be 2 to the power of 10.

With the special parameters defined, the input and output ports

can then be defined.

input // (1 bit wide)
 p_clock, p_reset, // PE clock & reset, rising-edge triggered
 e_in, w_in, // east (lsb) & west (msb) communication
 m_clock, // PE memory clock for external access, rising-edge
 m_write, // PE memory read/write control for external access:
 // read = 0, write = 1
 dump_reg, dump_mem; // PE register & memory dump clocks, rising-edge
input [ADDR_WIDTH-1:0]
 m_addr; // PE memory address for external access
input [WORD_WIDTH-1:0]
 n_in, s_in, r_in, // PE north & south & router (word) communication
 m_in; // PE memory data for external access
input [ADDR_WIDTH+46-1:0]
 p_instr; // PE microinstruction (described below)
output // (1-bit wide)
 e_out, w_out; // east (msb) & west (lsb) communication
output [9:0]
 p_flags; // PE condition flags (described below)
output [WORD_WIDTH-1:0]
 n_out, s_out, r_out, // PE north & south & router (word) communication
 m_out; // PE memory data for external access

The ports are exactly as described previously for the design of

the PE as shown in Figure 4, with a few additions. An interface to the

PE memory is incorporated into the model so that the controller can

access it; these ports are designated "m_...". However, since loading

and reading PE memory by the controller has no effect on the execution

of arithmetic operations, and since direct data access is notably

simpler than using ports, it was decided to access memory directly and

ignore the existence of the memory ports. For this reason, the memory

access operation will not be treated further.

37

Also, a number of clock signals are defined. These clocks are all

rising-edge-active, that is, whenever the signal changes from low (0) to

high (1), some set of actions is performed once and is completed before

the next such transition. The activities they control are also all

independent, so activating them all simultaneously would not affect PE

performance, although possible resource contention might produce

unpredictable results. The main PE clock "p_clock" governs all the PE

operation described previously for the design. The reset clock

"p_reset" clears all internal registers; this is needed because Verilog

initializes registers to an "unknown" state, but no such state exists in

the PE design. The "dump_mem" and "dump_reg" clocks cause the PE to

disgorge the contents of its memory and/or registers to the standard

output (hence the usefulness of the PE_NAME parameter); Verilog of

course can do this, but not nearly as conveniently nor with as useful a

format as custom routines. Note that the reset and dump operations do

not warrant consideration as part of the PE design.

With the ports defined, the data objects that they will be

connected to can be declared and defined, along with other objects used

internally by the PE.

reg do_mem_op; // (1 bit wide)
reg [7:0] reg_op, out_op;
reg [9:0] p_flags;
reg [ADDR_WIDTH-1:0] r;
reg [WORD_WIDTH-1:0] mem[0:MEM_LENGTH-1],
 regs[0:15],
 in_1, in_2, out, m_out,
 mem_wrk, alu_wrk;
reg [WORD_WIDTH:0] car_wrk;
wire e_out, w_out; // (1 bit wide)
wire [WORD_WIDTH-1:0] re, rw;
integer i, j, k, reg_dump_ct, mem_dump_ct, clock_ct;

The significance of these objects will become clear. Normally,

the next step would be to assign registers to the ports. In this case,

38

however, the assignments depend on a few parameters and constants that

must be defined first.

// PE microinstruction field definitions and content parameters:
d̀efine mb_addr p_instr[ADDR_WIDTH+46-1:46] // memory bus transfer address
d̀efine mb_srce p_instr[45] // mem bus transfer source is mem (1) or OUT (0)
d̀efine mb_d_mem p_instr[44] // memory bus transfer dest is memory, 1=true
d̀efine mb_d_in2 p_instr[43] // memory bus transfer dest is IN2, 1=true
d̀efine mb_d_in1 p_instr[42] // memory bus transfer dest is IN1, 1=true
 // Note: A carry-word is computed using registers IN1 and/or IN2 and a
 // specified carry-in bit. A carry operation is implied by specifying the
 // registers to use, and since the carry-word is placed into the destination
 // register, that ALU is disabled. The carry-out is placed in the carry
 // flag of the p_flags register, which remains unchanged by ALU operations.
d̀efine car_in1 p_instr[41] // use IN1 in carry-word computation, 1=true
d̀efine car_in2 p_instr[40] // use IN2 in carry-word computation, 1=true
d̀efine car_nin1 p_instr[39] // use inverse of IN1 (if used), 1=true
d̀efine car_nin2 p_instr[38] // use inverse of IN2 (if used), 1=true
d̀efine car_srce p_instr[37] // use value for carry-in (or carry flag) 1=true
d̀efine car_val p_instr[36] // carry-in value (if used), 1 or 0
d̀efine srce_reg p_instr[35:32] // source register of ALU operation...
d̀efine ew_srce p_instr[31:30] // source of east or west shifted-in bit...
 // mnemonics for ew_srce values:
 parameter EW0 = 2'b00, // shift constant 0 into east or west register
 EW1 = 2'b01, // shift constant 1 into east or west register
 EWIN = 2'b10, // shift input port bit into east or west register
 EWOU = 2'b11; // shift output port bit into east or west register
d̀efine shift p_instr[29:24] // shift east or west source reg "shift" bits
d̀efine regop p_instr[23:16] // ALU operand for dest register result
d̀efine dest_reg p_instr[15:12] // destination register of ALU operation...
d̀efine outop p_instr[11:4] // ALU operand for OUT register result
 // mnemonics for srce_reg and dest_reg values:
 parameter R0 = 4'b0000, R1 = 4'b0001, R2 = 4'b0010, R3 = 4'b0011,
 R4 = 4'b0100, R5 = 4'b0101, R6 = 4'b0110, R7 = 4'b0111,
 R8 = 4'b1000, R9 = 4'b1001, RD = 4'b1010, RR = 4'b1011,
 RN = 4'b1100, RS = 4'b1101, RE = 4'b1110, RW = 4'b1111;
d̀efine alu_dis p_instr[3] // allow disabling of ALU operation, 1=true
d̀efine alu_dis_i p_instr[2] // invert PE disable bit for ALU op, 1=true
d̀efine mb_dis p_instr[1] // allow disabling of memory bus operation....
d̀efine mb_dis_i p_instr[0] // invert PE disable bit for memory bus op....

// PE condition flag definitions and condition register bit positions:
// Note: the carry flag is only affected by a carry operation.
d̀efine reg_msb_f p_flags[9] // m.s.b. of destination register
d̀efine reg_zer_f p_flags[8] // if destination register == 0
d̀efine out_msb_f p_flags[7] // m.s.b. of register OUT
d̀efine out_zer_f p_flags[6] // if register OUT == 0
d̀efine in2_msb_f p_flags[5] // m.s.b. of register IN_2
d̀efine in2_zer_f p_flags[4] // if register IN2 == 0
d̀efine in1_msb_f p_flags[3] // m.s.b. of register IN_1
d̀efine in1_zer_f p_flags[2] // if register IN1 == 0
d̀efine disable_f p_flags[1] // state of PE disable bit
d̀efine carry_f p_flags[0] // carry-out of last carry operation

These are all of the microinstruction fields and condition flags

previously discussed for the PE design. The only exception is the

addition of mnemonics for those fields both containing encoded

information (as opposed to straight numerical values) and consisting of

39

more than a single bit, namely the Shift Control Input Source (ew_srce),

Source Register (srce_reg), and Destination Register (dest_reg) fields.

These are handy not only in the PE module program, but also for the

module programs that use instances of PEs.

Now that the desired register mnemonics are defined, the registers

can be attached to the ports.

assign n_out = regs[RN],
 s_out = regs[RS],
 re = regs[RE], // need since cannot access bits of regs[i]!!!
 e_out = re[WORD_WIDTH-1],
 rw = regs[RW], // need since cannot access bits of regs[i]!!!
 w_out = rw[0],
 r_out = regs[RR];

The only assignments that bear mention are those of the EAST and

WEST registers (regs[RE] and regs[RW]). The EAST register output port

(e_out) is supposed to be connected to the msb of regs[RE].

Unfortunately, Verilog does not provide a means to access the individual

bits of a member of a register array. It does allow the ith register

member of a register array to be accessed with the notation

"reg_array[i]", and it does allow the ith bit of a non-arrayed register

to be accessed with "plain_reg[i]", but it does not allow the jth bit of

the ith register member of a register array to be accessed (as might

reasonably be expected) with "reg_array[i][j]". The only option is to

hard-wire (assign) regs[RE] to an intermediate, non-arrayed register

(re), and then assign the msb of that (re[WORD_WIDTH-1]) to e_out. The

same problem occurs with regs[RW].

With all the declarations, definitions, and port assignments

completed, the "operational" program blocks can be entered. There are

six program blocks, and they can be seen in the Appendix: the "initial"

block, the reset cycle block, the microinstruction cycle block, the

memory access cycle block, the register dump cycle block, and the memory

40

dump cycle block. The initial block runs once, as soon as Verilog

begins executing the module, and simply resets the cycle counter

variables. The other five blocks are "always @ (posedge <clock>)"

blocks corresponding to the five clock signals previously described.

The only one pertinent to this discussion is the microinstruction cycle

block, and it is presented below.

The microinstruction cycle block is divided into four sections:

initial memory transfer operation, logic/carry operation, final memory

transfer operation, and exit operation. The initial memory transfer

operation runs only if memory operations are not disabled as previously

described, and consists of "latching the data onto the bus", or copying

the contents of the specified data transfer source to the memory

"working" register mem_wrk.

// Microinstruction cycle program
always @ (posedge p_clock)
 begin

 // Memory operation source-to-bus section
 if (~(̀mb_dis & (̀mb_dis_i ̂ (regs[RD] || 0)))) // not disabled
 begin
 do_mem_op = 1; // determine this now in case regs[RD] changes
 if (̀mb_srce) mem_wrk = mem[̀mb_addr]; // ̀mb_srce == memory
 else mem_wrk = out; // ̀mb_srce == OUT register
 end
 else do_mem_op = 0;

This must be done before the OUT register is modified by the logic

operation, as discussed previously for the PE design. Also, whether or

not the memory operations are disabled must be determined in case the

contents of the DISABLE register are changed by the logic operation

before the memory bus-to-destination operation. Note that a logic

operation must be performed on the DISABLE register to obtain its logic

(as opposed to numeric) value since Verilog provides no explicit means

of doing so.

41

The next section is the logic/carry operation, and only runs if

logic/carry operations have not been disabled. It is divided into two

parts: the setup, which follows, and the execution.

 // ALU/carry operation section
 if (~(̀alu_dis & (̀alu_dis_i ̂ (regs[RD] || 0)))) // not disabled
 begin

 // Load data sources to set up for operation
 case (̀srce_reg)
 RR: alu_wrk = r_in;
 RN: alu_wrk = n_in;
 RS: alu_wrk = s_in;
 RE:
 begin
 alu_wrk = regs[RE] << ̀shift % WORD_WIDTH; // zeros shifted in
 if (̀ew_srce == EW1
 || ̀ew_srce == EWIN && e_in // if source is a 1,
 || ̀ew_srce == EWOU && e_out) // then "shift" it in
 for (i=0; i<̀shift%WORD_WIDTH; i=i+1) alu_wrk[i] = 1;
 // use loop since Verilog doesn't allow variable part-select!!!
 end
 RW:
 begin
 alu_wrk = regs[RW] >> ̀shift % WORD_WIDTH; // zeros shifted in
 if (̀ew_srce == EW1
 || ̀ew_srce == EWIN && w_in
 || ̀ew_srce == EWOU && w_out) // if source is a 1,
 for (i=0; i<̀shift%WORD_WIDTH; i=i+1) // then "shift" it in
 alu_wrk[WORD_WIDTH-1-i] = 1;
 // use loop since Verilog doesn't allow variable part-select!!!
 end
 default: alu_wrk = regs[̀srce_reg];
 endcase
 if (̀car_srce) car_wrk = ̀car_val;
 else car_wrk = ̀carry_f;
 reg_op = ̀regop; // needed since cannot access bits of ̀regop!!!
 out_op = ̀outop; // needed since cannot access bits of ̀outop!!!

This is where the four logic/carry working registers are set up:

alu_wrk, car_wrk, reg_op, and out_op. The content of the specified

selectable-source register is copied into the working source register

alu_wrk; this means if the source is a communication register, the value

at the port is copied instead of the register, and if the register is

shiftable, its value is shifted and the specified source bit "shifted"

in. Unfortunately, Verilog provides no convenient means to shift-in 1s;

it only shifts-in 0s, and if 1s are required, they must be set manually.

The problem is exacerbated by the equally unfortunate fact that Verilog

42

does not provide a means to access a variable sequence of bits inside of

a register. It does allow a variably-chosen ith bit to be accessed with

the notation "plain_reg[i]", and it does allow a constantly-defined bit

sequence to be accessed with "plain_reg[31:24]", but it does not allow a

variably-chosen bit sequence to be accessed (as might reasonably be

expected) with "plain_reg[i:j]". Therefore, a "for" loop must be used

to set the shifted-in bits, and in the interest of model execution

speed, the loop only sets bits to 1 and is executed only if 1s are

required.

Next, the specified carry-in value is copied into the W-plus-1-

bit-wide carry-word working register car_wrk. Finally, the Register and

OUT Operator fields of the microinstruction, `regop and `outop, are

copied into working registers reg_op and out_op. This is necessary

because `regop and `outop are syntactically equivalent to

"p_instr[23:16]" and "p_instr[11:4]", and this syntax prohibits direct

access of individual bits.

Now that the working registers are set up, execution of the

logic/carry operation can take place.

 // Execute operation and store results
 if (̀car_in1 || ̀car_in2) // carry operation
 begin
 for (i=0; i<WORD_WIDTH; i=i+1)
 begin
 out[i] = out_op[{in_1[i], in_2[i], alu_wrk[i]}];
 car_wrk[i+1] = (in_1[i] ̂ ̀car_nin1) & ̀car_in1 & car_wrk[i]
 | (in_2[i] ̂ ̀car_nin2) & ̀car_in2 & car_wrk[i]
 | (in_1[i] ̂ ̀car_nin1) & ̀car_in1 &
 (in_2[i] ̂ ̀car_nin2) & ̀car_in2;
 end
 regs[̀dest_reg] = car_wrk;
 ̀carry_f = car_wrk[WORD_WIDTH];
 ̀reg_zer_f = !car_wrk[WORD_WIDTH-1:0];
 ̀reg_msb_f = car_wrk[WORD_WIDTH-1];
 end
 else // ALU operation
 begin
 for (i=0; i<WORD_WIDTH; i=i+1)
 begin
 out[i] = out_op[{in_1[i], in_2[i], alu_wrk[i]}];

43

 alu_wrk[i] = reg_op[{in_1[i], in_2[i], alu_wrk[i]}];
 end
 regs[̀dest_reg] = alu_wrk;
 ̀reg_zer_f = !alu_wrk[WORD_WIDTH-1:0];
 ̀reg_msb_f = alu_wrk[WORD_WIDTH-1];
 end
 ̀out_zer_f = !out;
 ̀out_msb_f = out[WORD_WIDTH-1];
 ̀disable_f = regs[RD] || 0; // ok here because wont change elsewhere

 end // of ALU/carry operation section

Separate program sequences for operations including and excluding

a carry-word computation were created to enhance understandability,

although they are fairly similar. In both cases, a loop is used to

perform the actual computation, since the Verilog behavioral language

has nothing to directly describe a parallel multiplexer or carry-

lookahead circuit. The loop iterates over each bit position of the data

word. The statements performing the Boolean functions exactly mimic the

individual 1-of-8 multiplexers described previously. Each bit of the

OUT-destination result goes directly into the OUT register since it is

non-arrayed and its bits are individually accessible. Each bit of the

selectable-destination result, however, goes back into the alu_wrk

register (where the selectable-source value was) for later transfer to

the selectable-destination register since it is a member of a register

array and its bits are not directly accessible. For the non-carry-

operation case, calculation of an OUT-destination bit precedes

calculation of the corresponding selectable-destination bit because the

former depends on the latter and the latter modifies itself.

The carry-word computation statement presented here in the Verilog

behavioral language is simply an expression of the well-known carry-

lookahead generate-propagate formula,

carry[i+1] = generate[i] | (propagate[i] & carry[i]) ,

where

44

generate[i] = operand_1[i] & operand_2[i]

and

propagate[i] = operand_1[i] | operand_2[i] .

Substitution and reduction yields

carry[i+1] = (operand_1[i] & operand_2[i])
 | (operand_1[i] & carry[i])
 | (operand_2[i] & carry[i]) ,

which appears almost verbatim in the program. Minor differences are due

to the use of slightly different variable names and expressions for the

operands that incorporate the Use INx and Invert INx Carry Control

microinstruction signals.

With the computation loop completed, the selectable-destination

result is copied to the appropriate register, and the condition flags

are set up in the CONDITION register as specified previously for the PE

design. There are also minor differences called for in these procedures

depending on whether or not the operation includes a carry-word

computation. In concluding the description of the logic/carry operation

section, it should be mentioned that the Disable condition flag is set

here instead of in the exit operation because it cannot be changed

either by memory operation or if logic/carry operation is disabled.

The next program section is the final memory operation. It runs

only if memory operations are not disabled, and consists of "latching

the data from the bus", or copying the contents of mem_wrk to the

specified data transfer destination(s).

 // Memory operation bus-to-destination section
 if (do_mem_op) // mem ops not disabled
 begin
 // only latch TO memory if not latched FROM memory
 if (̀mb_d_mem && !̀mb_srce) mem[̀mb_addr] = mem_wrk;
 if (̀mb_d_in2)
 begin
 in_2 = mem_wrk;
 ̀in2_zer_f = !in_2;

45

 ̀in2_msb_f = in_2[WORD_WIDTH-1];
 end
 if (̀mb_d_in1)
 begin
 n_1 = mem_wrk;
 ̀in1_zer_f = !in_1;
 ̀in1_msb_f = in_1[WORD_WIDTH-1];
 end
 end // of memory operation section

Also, the condition flags are set up in the CONDITION register as

specified previously for the PE design.

Finally, the exit operation must be performed prior to termination

of the microinstruction cycle program.

 clock_ct = clock_ct + 1;

 end // of microinstruction cycle program

The cycle counter is not a feature of the PE design but of the

model program. It can be used by the instantiating module for direct

monitoring, making tracking the performance of various algorithms

extremely simple. This concludes the discussion of the PE behavioral

model as well as of the PE in general. The following section,

"Arithmetic Performance", details the design, modeling, and performance

of configurations of PEs for implementing arithmetic operations.

ARITHMETIC PERFORMANCE

Overview

As mentioned previously, one measure of the potential for success

of a particular processor architecture is the number of clock and

microinstruction cycles required to perform basic operations. In the

case of a processor intended as an element in a reconfigurable

multiprocessor computer, the measure includes the amount of speedup

obtained by the application of multiple processors to a single

operation. The complete set of experiments considered for this study

consists of the 40 (non-trivial) combinations of: addition/subtraction,

multiplication, and division; integer and floating-point; 32- and 64-

bit-wide data words; 1, 2, 4, and 8 PEs.

The nature of a PE configuration can be observed from the general

MSIMD multiprocessor architecture for which the PEs were intended. This

appears in Figure 11.

The PEs are shown here connected in a standard two-dimensional

rectangular mesh, but they can also be connected in a three-dimensional

spiral or circular cylinder or torus without impacting this discussion.

Also, there is a global data routing system that is not shown which has

individual connections to each of the PEs.

The general operation of the system is relatively straightforward.

Each of the microprogram memory units ("MMUs") that can be seen in

Figure 11 preceding the rows of PEs contains all of the microinstruction

sequences required to perform the machine operations. The MMUs receive

a clock signal and a starting address broadcast from the microcontrol

47

unit ("MCU"), and they in turn broadcast the clock signal and a

microinstruction to all of the PEs in their row. The programming of the

MCU is designed to synchronize with and control the flow of the

microinstructions from the MMUs.

MMU

PE

MCU
N

S

EW

Figure 11. Target MSIMD Multiprocessor Architecture

For purely SIMD operations, the programs contained within the MMUs

are identical. To apply parallelism to individual operations, the MSIMD

operation is invoked by defining parallel groups of PEs and designing

microprograms such that the individual elements (of a group) receive

different microinstructions. As can be seen in Figure 11, the only way

for PEs to receive different microinstructions is for them to be on

different rows. To facilitate inter-PE communication, they should use

word-wide data paths, and so they should also be adjacent in the North

48

and South directions. Therefore, a parallel group consists of a segment

of a column. The partitioning of the PE space into column segments,

called "configuring", is entirely a function of the programs placed into

the MMUs. As such, the "configurations" can be different from operation

to operation, making the architecture "reconfigurable" with the intent

of changing the "method" used to perform the operation. The SIMD

paradigm then applies among parallel groups which represent the

executors of machine instructions (the external view), while the PEs

inside a group operate in a synchronous-MIMD fashion on the

microinstruction scale (the internal view).

To accommodate branching within the operation algorithm, the

disable feature of the PE architecture is employed. The PE can be

disabled based on its condition by first instructing it to set its

DISABLE register to the result of some Boolean operation, and then

instructing it to allow disabling on individual microinstructions. The

microinstruction stream does not actually branch; all of the optional

microinstructions are broadcast in some programmed sequence, and

individual PEs "decide" which ones to ignore by disabling themselves.

Note that the number of instruction cycles required to perform a branch

is equal to the number of branches multiplied by the number of cycles

required for the longest branch, plus the overhead of setting up the

DISABLE register. Also note that in this architecture, the CONDITION

register serves no vital purpose.

Like the PE, the configurations are modeled in the Verilog

behavioral language. The typical configuration program consists of a

single module that first instantiates and connects the required number

of PEs and then executes a sequence of microinstructions on them. Since

49

a configuration simulation executes linearly and singly within a trial,

the entire program is placed within a Verilog "initial" block. Also,

since the actual operation of the MCU and MMUs has no bearing on the

performance of arithmetic operations, they are not specifically modeled;

instead, their functionality is simulated by the capabilities of the

Verilog behavioral language itself. This makes writing and

understanding the behavioral configuration programs significantly easier

because all that is necessary to perform a microinstruction cycle is to

set up the p_instr of each PE individually and then toggle all the

p_clock lines simultaneously. Each program also contains a large header

which includes descriptions of the microinstruction format, fields,

registers, flags, and operations, definitions of mnemonic parameters,

and general instructions on configuration programming. The mnemonics

are especially useful because they form a micro-assembly language. The

details of configuration programming can be seen in any configuration

module program, all of which appear in the Appendix, but note the

floating-point programs are written in a much more advanced style than

the integer ones.

Before proceeding further, a few items remain to be mentioned.

First, there was significant evolution of the PE design that occurred

during the documentation as well as the experimentation processes. Thus

it is that the design used in the majority of experiments, module "pe3",

is slightly different than the one described previously, "pe4". Also,

there is a conceptual difference in the target multiprocessor

architecture for which the configuration model programs are developed.

These differences and their significance are outlined in the following

paragraphs.

50

PE design: shift control input source. The Shift Control Input

Source specification does not exist in the microinstruction of the PE

used. The responsibility of connecting a PE's EAST and WEST

communication register input ports to its own output ports, its

neighbors output ports, or the constants 0 or 1 fall to a controller.

Since it does not affect the PE function, it has zero impact on

performance, and only a slight impact on the form of the configuration

model programs.

PE design: carry-lookahead logic. The carry-lookahead logic unit

is not physically located in the PE used; its functionality resides

instead in the global data router. This originates from the 1-bit-

serial PE design where a sub-router has direct access to the IN1 and IN2

registers and the control signals in the microinstruction in order to

implement arbitrary-precision arithmetic (precision-reconfigurability).

This sub-router is responsible for supplying the carry-word to the PE's

ROUTER input port and setting the PE's Carry condition flag. Since the

sub-router itself is not modeled, its carry-word computation function is

included in the PE model program, so the PE actually sets its own ROUTER

register input port. Since no instance was found where either the

ROUTER register was needed for something besides the carry-word, or no

free general-purpose register was available, it has zero impact on

performance, and only a slight impact on the form of the configuration

model programs.

PE design: carry-word computation. A design rule exists in the

PE used that is absent from the PE described: a carry-word computation

and a non-carry operation cannot be performed in a single

microinstruction cycle. The origin of this characteristic is

51

undetermined, but may be as simple as a miscommunication. Since it

might be possible to rewrite the loops in the configuration model

programs to take advantage of the additional concurrency afforded by the

elimination of the rule, the impact on performance might be significant.

However, it is exceedingly unlikely that such performance difference

would completely invalidate the results obtained with the PE design

used.

Target multiprocessor architecture. In the target multiprocessor

architecture for which the configuration model programs are developed,

instead of there being one MMU for each row of PEs, each PE

incorporates a combined microinstruction program memory and control

unit. This is basically Figure 11 with the symbols for the MMUs

removed; this is shown in Figure 12.

PE

MCUN

S

EW

Figure 12. Alternate Multiprocessor Architecture

52

The MCU broadcasts the starting address of the machine operation

program and the clock to all of the PEs internal control units, and it

counts the cycles to determine when the operation has been completed. A

PE's controller uses the its condition flags and EAST and WEST register

outputs to control execution directly, and synchronization of PEs in a

parallel group for branch equalization is attained by using null-

operations. Although the capability for full MIMD operation exists, it

is not studied in this research in order to focus on the external/SIMD-

internal/MIMD paradigm. In contrast with the architecture described

previously, here the topology of a parallel group is not constrained to

a column segment because PEs do not have to be on different rows to

receive different microinstructions. This makes the architecture vastly

more reconfigurable and flexible. To support inter-PE communication,

however, PEs in a parallel group should still be adjacent in the four

NEWS directions. Additionally, the CONDITION register is vital while

the DISABLE register serves no useful purpose. Also, the number of

instruction cycles required to perform a branch is only equal to the

number of cycles required for the longest branch. This almost certainly

results in a drastic reduction in the total number of cycles required to

perform a given operation.

This architectural concept is definitely the product of both

miscommunication and creativity. The tradeoff for the considerable

performance and flexibility advantages is that more hardware is required

since the number of MMUs increases from one to the number of PEs. In

fact, each PE becomes a simplistic microprocessor. If performance and

reconfigurability are given priority, then this design represents a

53

valid compromise. It is this positive view that has been taken with

this research.

Lastly, the amount of time required to adequately perform all of

the experiments desired turned out to exceed that which was available,

so the number of experiments actually performed is somewhat less than

the original goal. Thus it is that floating-point division remains

unstudied, while the study of floating-point addition/subtraction is

incomplete.

To aid in identifying the various model programs and files that

were developed, appear in the Appendix, and are referred to in the

following discussions, Table IV is provided. It lists the file names,

the modules contained, and the PE modules instantiated, and also gives

brief descriptions of each.

The order in which the items are listed in the table provides a

convenient organization for the following subsections which describe the

configuration models and present their results. It also reflects the

organization of the Appendix, and can therefore serve as its index.

Discussion of the results and various tabular and graphical

representations are presented in the "Analysis" section which follows

this one.

54

Table IV

Behavioral Model Program Files

Description

pe.v pe0 first PE model, least features
pe adds multi-destination memory bus
pe2 adds variable-shift to EAST & WEST regs
pe3 adds inversion to carry unit
pe4 adds selectable-destination to carry unit,

selectable source to EAST & WEST regs,
removes logic/carry mutual exclusion rule

pc01–0.v pc1 pe0 add, int, unsigned, no carry-op inversion
pc01–v pc1 pe add, int, unsigned, no carry-op inversion

pc02–0.v pc2 pe0 mult, int, unsigned, 2W res, 1 PE
pc02–.v pc2 pe mult, int, 2s-compl, 2W res, 1 PE
pc03–.v pc3 pe mult, int, 2s-compl, 1W res, 1 PE
pc04–.v pc4 pe mult, int, 2s-compl, 1W res, 2 PEs, 1bit-shift
pc05–2.v pc5 pe2 mult, int, 2s-compl, 1W res, 2 PEs, vari-shift
pc06–2.v pc6 pe2 mult, int, 2s-compl, 1W res, 4 PEs, vari-shift
pc07–2.v pc7 pe2 mult, int, 2s-compl, 1W res, 8 PEs, vari-shift

pc08–.v pc8 pe div, int, 2s-compl, 1 PE, restoring
pc09–.v pc9 pe div, int, 2s-compl, 2 PEs, restoring
pc10–.v pc10 pe div, int, 2s-compl, 1 PE, non-restoring
pc11–.v pc11 pe div, int, 2s-compl, 2 PEs, non-restoring

pc12–3.v pc12 pe3 add, int, 2s-compl, carry-op inversion

pc13–3.v pc13 pe3 add, fp, 32-bit, 1 PE
pc14–3.v pc14 pe3 add, fp, 64-bit, 1 PE

pc15–3.v pc15 pe3 mult, fp, 32-bit, 1 PE
pc16–3.v pc16 pe3 mult, fp, 64-bit, 1 PE
pc17–3.v pc17 pe3 mult, fp, 32-bit, 2 PEs
pc18–3.v pc18 pe3 mult, fp, 64-bit, 2 PEs
pc19–3.v pc19 pe3 mult, fp, 32-bit, 4 PEs
pc20–3.v pc20 pe3 mult, fp, 64-bit, 4 PEs
pc21–3.v pc21 pe3 mult, fp, 32-bit, 8 PEs
pc22–3.v pc22 pe3 mult, fp, 64-bit, 8 PEs

pc23–3.v pc23 pe3 add, fp, 32-bit, 2 PEs, incomplete

File Module PE

—

—
—
—

—

55

Integer Addition/Subtraction

Since the full addition/subtraction capability is designed into

the PE architecture as previously described, this subsection is only

presented for completeness. As previously shown, a full integer

addition/subtraction requires exactly 2 cycles, one for the carry-word

computation and one for the Boolean addition. If loading and storing to

memory is included, this number increases to 5 -- two to load each of

the operands and one to store the result. This is irrespective of the

PE's specified data word width, and clearly, the number of cycles cannot

be reduced by the application of multiple processors.

As can be seen from Table IV, three "configuration" model programs

were written for integer addition/subtraction, mostly to test the PE

model module programs and provide practice for programming configuration

models. They all employ different versions of the PE model, so they can

be used to present a clear example of how the PE design evolved. The

programs can be seen in the Appendix, and will not be discussed further

since they do not contribute any significant results.

Integer Multiplication

There are a number of varieties of integer multiplication from

which to choose: signed or unsigned, single least- or most-significant

word or double-word result. As indicated in Table IV, research was

initiated arbitrarily with the unsigned double-word result, was changed

to 2s-complement signed double-word result for greater general

applicability, and was changed again to 2s-complement signed single

least significant word result for intended increased floating-point

applicability (although it was later realized that floating-point

multiplication uses the most significant word). There were three

56

configuration model programs written for the two double-word result

cases, all containing a module "pc2". They can be seen in the Appendix,

and will not be discussed further since they do not contribute

significantly to the results of the experiment.

That leaves the 2s-complement signed multiplication which produces

a single-least-significant-word result. The method used is the common,

straightforward shift-and-add process observed when performing manual

multiplication. In this case, it was decided to shift the "bottom"

operand in order to examine each of its bits individually, add the "top"

operand to the partial-sum if the previously examined bit was a 1, and

then shift the "top" operand left to prepare for the next add. A more

detailed version of the algorithm is shown below in a "pseudo-code" form

organized to accommodate the particular architecture of the PE.

make operands positive if necessary;
for every bit of a data word:

rotate operand #1 right 1 bit;
if new msb of operand #1 is 1:

add operand #2 to lsw of partial sum;
(end if)

else:
execute null-operations to synchronize;
(end else)

shift operand #2 left 1 bit;
(end for)

adjust sign of result if necessary;

There are a number of special things to notice about this

algorithm. First, overflow detection is not shown because the

responsibility for it is given to the PE's MCU, but it is programmed

into the module. Second, the way the bits of a data word are examined

from least to most significant is by first rotating the word one bit to

the right, so that the lsb becomes the msb, and then examining the msb.

That turns out to be the best way to do it with this PE design. Third,

all the possible bits in the data word are processed, and the "if"

57

statement is followed by an "else" statement that takes up the same

number of cycles. This is to satisfy the external-SIMD paradigm

discussed previously where all machine operations must take the same

number of cycles. Fourth, the signs of the operands and result are

explicitly adjusted. Referring to Table IV, the reason for this can be

seen to be that the ability to invert the operands of a carry-word

computation did not yet exist in the PE design. As previously

described, that feature permits the negation of a data word in exactly

two cycles. Examination of the programs reveals that the

microinstruction cycles used for 2s-complementation where the carry-

operand inversion feature is lacking can be precisely identified.

Therefore, the difference in cycles can be accurately determined without

reprogramming those configurations, and the effect of the additional

carry unit complexity can be readily quantified. Finally, notice that

the data word width is a parameter, so performing experiments for

different widths is particularly easy.

That description fits the single-PE integer multiplication model,

the module "pc3" in file "pc03-.v" shown in Table IV. The simulation

requires 142 cycles for the 32-bit multiplication and 270 for 64 bits.

This includes loading from and storing to memory, and can be broken down

into a 4-cycle loop and 14 other cycles. As previously mentioned, the

number of cycles required to adjust the signs can be determined, and it

is found to be 10 of the 14. Replacing those sequences with the two-

cycle negation offered by the carry-operand inversion feature and

combining cycles where possible results in a total saving of 6 cycles.

Thus the feature is of little benefit in this case.

58

The first attempt at applying parallelism can be seen from Table

IV to be module "pc4" in file "pc04-.v". The concept employed involves

taking advantage of the independent nature of the individual shift-and-

add iterations described previously to distribute them equally among two

PEs. Since word-communication is desired, the PEs are a North-South-

connected parallel group. The fact that they have individual MCUs is

modeled in the Verilog behavioral language by using separate "if-else"

statements to set up each PE's microinstruction individually prior to

clocking. The iterations are distributed by having one PE begin

operation on bit position 0, having the other begin on bit 1, and having

both skip one bit at the end of each iteration. In other words, one PE

computes the partial sum using only the even-numbered bits, while the

other uses only the odd, so the number of iterations performed by each

PE is half of what it was in the previous case, or WORD_WIDTH/2. This

method is natural given that the PE model used can only shift a single

bit position at a time. At the end, one (or both) processors collect

the partial sum from the other and add the two partial sums to get the

final result. An additional opportunity for concurrency is presented

when adjusting the signs of the operands before the loop. Instead of

each PE adjusting both operands, they each adjust a different operand,

and then simply exchange them.

The simulation requires 115 cycles for the 32-bit multiplication

and 211 for 64 bits. The loop contains 6 cycles, the additional 2

resulting from the skipping of the bits in each of the two operands, and

this makes it obvious that linear speedup is not possible. Non-loop

cycles increased to 19, the additional 5 being required to offset the

two operands before entering the loop and to transfer and add the two

59

partial sums after the loop. This would be worse if parallel operand

sign adjustment was not used. If carry-operand inversion was available,

the use of the two-cycle negation would save a total of 4 cycles, once

again not particularly significant.

The obvious way to apply 4 PEs, also connected North-South in a

line for word-width communication, to the multiplication operation is to

extend the 2-PE application, i.e., offset the starting bit position of

each of the four PEs by one, and have them all skip three cycles in the

loop. This again reduces the number of iterations from the previous

case by half, to WORD_WIDTH/4, but it can be seen by examining the

previous 2-PE program to increase the number of loop cycles to 10, the 4

additional cycles resulting from the two more shifts of each of the two

operands. Also, setting up the two additional offsets requires 4 more

cycles and swapping and adding the two partial-sum-sums requires 4 more

cycles, raising the number of cycles outside the loop to 27. The 32-bit

multiplication therefore requires a total of 107 cycles, and 64 bits

requires 187 cycles. Because the sign-adjustment is identical to the 2-

PE case, the use of a carry-operand inversion feature would again save

only 4 relatively insignificant cycles.

Similarly, the application of 8 PEs again reduces the number of

iterations by half, to WORD_WIDTH/8, increasing the number of loop

cycles to 18, and increasing the number of non-loop cycles to 40,

resulting in a 32-bit multiplication requiring 112 cycles and 64 bits

requiring 184 cycles. Note that for this method, the 8-PE 32-bit

multiplication requires 5 more cycles than the 4-PE version, actually

producing a "slowdown". Similarly, it is clear from the saving of a

mere 3 cycles that the application of 16 PEs would then result in a

60

slowdown for the 64-bit multiplication. Like the 4-PE case, the use of

a carry-operand inversion feature would still save only 4 relatively

insignificant cycles.

Model programs were not created for the latter two cases because

the PE design was modified. From the 2-PE case, it was clear that a

significant number of cycles were being consumed by the shifting, and

that the application of more PEs would make the effect more pronounced.

This is indeed the case illustrated in the previous discussion.

However, if a means existed to shift a large quantity of bit positions

in a single cycle, one of the two PEs could begin operation halfway

through the data word, eliminating both the need to skip bits in the

loop and the need to perform multiple PE offset setup steps, thereby

requiring fewer cycles. So the variable-barrel-shift logic was added to

the EAST and WEST registers of module "pe", creating module "pe2", and

the 2-PE experiment was redesigned to take advantage of the new feature

in exactly the manner described, forming model "pc5" in file "pc5-2.v"

seen in Table IV. Of course, since all of the bits must be shifted one

way or another, variable-shifting is of no use in the single-PE case.

Examination of module program "pc5" reveals that it resembles a

hybrid of "pc4" and "pc3"; the code before and after the loop is

identical to "pc4" except for the new shift quantity, and the loop

itself is identical to "pc3" where no bit-skipping occurs, except that

the number of iterations is halved. The simulation requires 83 cycles

for the 32-bit multiplication and 147 for 64 bits. The number of loop

cycles is 4 and the number of other cycles is 19, both as expected. The

saving of 4 cycles by using a carry-operand inversion feature appears

more significant in this case.

61

Similarly, module "pc6" in file "pc06-2.v" resembles a combination

of the non-loop code described for the previous 4-PE case and the loop

from "pc3". The simulation requires 55 cycles for the 32-bit

multiplication and 87 for 64 bits. The number of loop cycles is still 4

and the number of other cycles is 23, both as expected (23 is the 27

from the previous 4-PE case minus the 4 for operand setup shifts).

Again, the saving of 4 cycles by using a carry-operand inversion feature

appears more significant.

Also similarly, module "pc7" in file "pc07-2.v" resembles a

combination of the non-loop code described for the previous 8-PE case

and the loop from "pc3". The simulation requires 44 cycles for the 32-

bit multiplication and 60 for 64 bits. The number of loop cycles is

still 4 and the number of other cycles is 28, both as expected (28 is

the 40 from the previous 8-PE case minus the 12 for operand setup

shifts). Again, the saving of 4 cycles by using a carry-operand

inversion feature appears more significant.

This concludes the development of integer multiplication. The

results are discussed further and presented in various tabular and

graphical forms in the "Analysis" section which follows this one.

Integer Division

The first attempt at dividing 2s-complement signed integers is

shown in Table IV to be module "pc8" in file "pc08-.v". It uses a

slightly modified version of the shift-subtract-restore method commonly

described in the literature [24][25][26] where the need to restore is

eliminated by delaying the store. A pseudo-code version of the

algorithm is shown below, organized to accommodate the particular

architecture of the PE.

62

determine if divisor is zero;
make dividend positive and divisor negative if necessary;
clear remainder;
for every bit of a data word:

shift remainder left 1 bit with msb of dividend in;
compute sum of remainder and negated divisor;
if result is negative (msb of result is set):

execute null-operation to synchronize;
shift dividend/quotient left 1 bit with 0 in;
(end if)

else:
replace remainder with result;
shift dividend/quotient left 1 bit with 1 in;
(end else)

(end for)
adjust signs of results if necessary;

First note from Table IV that the programs are written using PE

module "pe", and many of the characteristics of the integer

multiplication algorithm discussed previously exist here: processing

all the bits in the data word, null-operations for synchronization,

explicit sign adjustment, predictable effect of carry-operand inversion,

and easy data word width modification. Second, the effect of dividing

by zero is specified to be unpredictable; the condition is flagged by

the MCU, but the operation is allowed to proceed as usual to avoid

unnecessary programming complication. Third, the divisor is negated

before the loop because it would otherwise have to be performed inside

the loop if a full subtraction was used instead of a full addition

(recall that PE module "pe" has cannot invert a carry-operand). Fourth,

the result of the subtraction is not immediately placed back into the

remainder register like the traditional "restoring" division algorithm

calls for. If it was, the above algorithm would be different by the

presence of an addition (i.e., "restoration") of the divisor to the

remainder in the "else" statement, and the absence of the remainder

replacement (i.e., "store") operation from the "if" statement. This

would cause the longest iteration to require two distinct full addition

63

operations instead of just one, clearly a more costly proposition.

Fifth, the register containing the dividend is "recycled", and after all

the iterations are complete, it contains the quotient. Lastly, note

that the actual program performs the same addition at two points in the

loop. This is because, since there is only one distinct addition and

the registers containing the operands and the carry-word can remain

unchanged between the first and second times that the sum is required,

re-computing the sum without re-computing the carry-word requires only

one cycle compared to the two otherwise required to first store and then

retrieve the sum.

The simulation of model "pc8" requires 213 cycles for the 32-bit

multiplication and 405 for 64 bits. As with integer multiplication,

this includes loading from and storing to memory. It can be broken down

into a 6-cycle loop and 21 other cycles. As was discussed previously,

using the two-cycle negation offered by the carry-operand inversion

feature instead of the sign-adjustment sequences can be found to produce

a total saving of 8 cycles. Thus the feature is of little benefit in

this case.

Because the iterations of a division operation are not

independent, no straightforward way exists to apply parallelism. In

this case, however, the PE architecture is the source of one

serialization that is algorithmically unnecessary. Since the algorithm

calls for two different variables to be shifted left, and the PE has

only one register with left-shifting ability (EAST), it was hypothesized

that a second EAST register provided by an additional PE might be

successfully employed to reduce the number of cycles in a loop

iteration. Also, the same kind of sharing of sign-adjustment duties

64

performed for multi-PE integer multiplication should save an additional,

albeit relatively small, number of cycles.

This is the approach taken with the 2-PE model, module "pc9" in

file "pc09-.v". Since the algorithm calls for one of the left-shifting

registers to shift-in the bit shifted out of the other left-shifting

register, the natural connection for the two PEs is East-West, so this

is the configuration used. Examination of the loop used in the single-

PE model reveals that 5 of its 6 cycles are serially dependent, so only

1 cycle is saved. Parallelizing the sign-adjustment saves 9 cycles

leaving 12, so the simulation of model "pc9" requires 172 cycles for a

32-bit division and 332 for 64 bits. If carry-operand inversion was

available, the use of the two-cycle negation would save a total of 4

cycles, not particularly significant.

No means of applying more processors to shift-subtract-restore

division was found, so another algorithm was tried. This one is also

commonly described in the literature, and is called non-restoring-shift-

add-or-subtract [24][25][26]. Note that even though the previous

algorithm was modified to be non-restoring it is still referred to as

restoring, and it differs from this one which is referred to as non-

restoring even though it actually performs a restore at the end. A

pseudo-code version of the algorithm is shown below, organized to

accommodate the particular architecture of the PE.

make dividend positive if necessary;
make positive and negative versions of divisor;
clear remainder;
for every bit of a data word:

if remainder is negative (msb is set):
shift remainder left 1 bit with msb of dividend in;
add positive divisor to shifted remainder;
(end if)

else:
shift remainder left 1 bit with msb of dividend in;
add negative divisor to shifted remainder;

65

(end else)
if modified remainder is negative (msb is set):

shift dividend left 1 bit with 0 in;
(end if)

else:
shift dividend left 1 bit with 1 in;
(end else)

(end for)
if resulting remainder is negative (msb is set):

add unnegated divisor to remainder;
(end if)

else:
execute null-operation to synchronize;
(end else)

adjust signs of results if necessary;

The division experiment was repeated with this algorithm,

producing a single-PE model in module "pc10" of file "pc10-.v" and a

dual-PE model in module "pc11" of file "pc11-.v" as seen in Table IV.

The results obtained with this algorithm are worse than with the

previous one, so all of the details will not be discussed. However,

some useful observations were made. The optimal loops designed for

these models are exactly the same length as those designed for the

previous algorithm, the non-loop operations only require 4 more cycles

in the 1-PE case and 3 more cycles in the 2-PE case, and the only

visible method of applying parallelism is the same as for the previous

algorithm, so it appears that the performance is virtually identical.

However, a method is employed whereby both the positive and negative

versions of the divisor are stored in PE memory for access during the

loop. Consideration after the fact resulted in the conclusion that

storing PE operation variables in memory is undesirable because the

allocation and addressing of such memory is impractical. Examination of

the loops reveals that retrieving the divisors if they are stored in

registers requires one additional cycle, and will certainly produce a

drastic increase in the total number of cycles required to perform the

division. The subsequent addition of the carry-operand inversion

66

feature to the PE design might impact the implementation of this

algorithm, but this remains to be explored. Thus the register-storage

versions of the modules were not developed; the memory-storage versions

can be seen in the Appendix.

This concludes the development of integer division. No additional

algorithm was encountered in the literature that appeared likely to

offer a lower worst-case cycle count; this is discussed more in the

"Analysis" section which follows this one, along with various tabular

and graphical representations of the results.

Floating-Point Representation

The floating-point representation used here is a minor variation

of the standard defined by the IEEE [25][24][26]. It can be seen from

Figure 13 to consist of three fields: sign, exponent, and mantissa.

233031 022
Sign Exponent Mantissa

62 5263 051

Single Format (32 bits)

Double Format (64 bits)

Figure 13. IEEE Standard Floating-Point Representations

The sign bit indicates the sign of the mantissa and occupies the

msb of the floating-point word. The next adjacent field is a 2 n-1 -1

biased 2s-complement signed binary representation of the exponent, where

n is the number of bits in the field. Thus for the 32-bit "single"

format, the exponent field consists of 8 bits, so the bias is 127

(decimal). That means that the smallest possible exponent is -127 and

67

is represented by 0, a zero exponent is represented by 127, and the

largest possible exponent is 128 and is represented by 255. Similarly

for the 64-bit "double" format, n is 11, yielding a bias of 1023, so the

smallest exponent is -1023 and is represented by 0, a zero exponent is

represented by 1023, and the largest exponent is 1024 and is represented

by 2047. The last field is the fractional portion of the normalized

magnitude of the mantissa. A normalized mantissa is one that is

expressed as a single non-zero non-fractional digit and a number of

fractional digits, a condition which can be created for most values by

adjusting the exponent. Note that for binary numbers, a non-zero digit

must be a 1, so the non-fractional digit is thereby known and assumed

instead of represented.

To maintain emphasis on the performance of the actual floating-

point operation, some of the special cases defined by the IEEE floating-

point standard are modified or eliminated. Additional bits (guard bit,

round bit, sticky bit) are not modeled. Single- and double-extended

formats are not modeled, only plain single and double formats. Special

values NaN (not-a-number), ∞ (infinity), denormalized values (where the

non-fractional digit is zero because the exponent cannot be made

smaller), and negative zero (zero with the sign bit set) are not

implemented. The special values used instead are positive and negative

maximum (all bits of exponent and mantissa set), positive zero (all bits

clear), and negative minimum (only sign bit set). Finally, rounding

methods other than rounding-down by truncation are not used. This is

the simplest and fastest method, although also the least accurate.

All the floating-point modules employ PE model "pe3" which

introduces the carry-operand inversion feature. The addition of this

68

feature was not driven by a particular need; it was simply a general

enhancement. They also benefit from a new approach to code

documentation. One fact learned from the integer division experiments

was that the quality and quantity of comments used in those

configuration model programs was insufficient to facilitate readability

and comprehension beyond the very near term. This was much less of a

problem with integer multiplication than with division due to the

relative difference in algorithmic complexity. The new approach uses

multiple, hierarchical components and a redesigned pseudo-assembly

documentation language to provide complete and organized coverage of all

information relevant to the programming of the behavior. The

significant difference can be observed by comparing module "pc13" to

"pc11" in the Appendix. Further examination of the module programs

shows that determining the cycle count that would result from the

removal of the carry-operand inversion from the programs is much more

difficult than doing the opposite as was done previously. Since the

feature is employed in the floating-point models, the comparison is not

made for floating-point. Lastly, note that all the configuration models

require separate 32- and 64-bit versions. This is because some of the

steps performed are so dependent on the lengths and positions of the

floating-point fields, and the flexibility of Verilog's parameterization

is so limited, that developing separate versions is significantly easier

than developing a single universal program.

Floating-Point Addition/Subtraction

The first attempt at modeling a floating-point function can be

seen in Table IV to be modules "pc13" and "pc14" in files "pc13-3.v" and

"pc14-3.v". They model the single-PE addition/subtraction of 32- and

69

64-bit floating-point numbers, respectively. The operation is described

by six stages: load and decode the operands, align the operands, add or

subtract the operands, 2s-complement the result, normalize the result,

and encode and store the result. The stages are discussed individually

and in order below, and more detailed pseudo-code representations are

included where appropriate.

The first stage is to load and decode the operands and handle the

special value zero. This is straightforward, and does not merit a

pseudo-code representation; the details can be seen in the Appendix.

Note that the value identified as zero is handled as a special case.

This is because the masking of the mantissa includes ORing in the

assumed non-fractional digit of 1, but the assumption is false for the

zero value (and only that value). Also, the masking operations require

constants, and these are stored in memory; this is further discussed in

the "Analysis" section. Note that the bias of the exponents is not

removed. This is partly because the biased values, which are normally

positive, are easier to work with, and partly because the msb, by

indicating a negative biased exponent, indicates that the number is too

small to represent in the space available in the floating-point word.

Lastly, the variable-shift feature added with PE model "pe2" is almost a

necessity for decoding the exponent. Without it, the exponent would

either have to be right-justified by performing a large number of 1-bit

shifts, or more likely, used unjustified, increasing the difficulty of

programming.

The second stage is to align the operands. Alignment refers to

"moving" the decimal point of the smaller operand to the same absolute

position as the larger operand by adjusting the exponent. Such

70

alignment is clearly necessary in order not to lose precision, that

being the entire point of all the floating, i.e., the floating-point.

The algorithm follows.

determine which exponent is smaller, and set up;
for every bit of a mantissa:

if the "smaller" exponent is really smaller:
increment the smaller exponent;
shift its mantissa right 1 bit;
(end if)

else
execute null-operation to synchronize;
(end else)

(end for)
use the larger exponent for the result exponent;

To make the loop as small as possible, shortcuts are used. The

determination of which exponent is smaller and the placement of the

exponents and mantissa into the working registers is performed before

the loop. Then inside the loop, since it is known which register

contains the smaller exponent, it only remains to be determined if and

when the two exponents become equal, and this can be done with a simple

exclusive-or instead of an expensive full subtraction.

The third stage is to add or subtract the operands. This is not

as straightforward as it appears. The actions are better described by a

truth-table than by an algorithm, so this is presented below as Table V.

Table V

FP Addition/Subtraction Operations and Signs

Operand
#1 Sign

Operand
#2 Sign

Specified
Operation

Perform
Operation

Result
Sign

+
+
+
+
–

–
–

–

+
+
–
–
+
+
–
–

+
–
+
–
+
–
+
–

+
?
?
+
?
–
–
?

Op1 Op2+
–
–
+
–
+
+
–

Op1
Op1

Op1
Op1
Op1

Op2
Op2

Op2
Op2
Op2

Op1

Op1

Op2

Op2

71

From the table it can be seen that there are four distinct

combinations of required operations and result signs, so these must be

executed based on the three variables. In the Verilog behavioral

program, this is done using a 4-stage if-else. The question-marks

indicate that the required result sign cannot be determined empirically

and must therefore be taken from the actual result of the operation.

The fourth stage is to 2s-complement the result mantissa if the

addition/subtraction made it negative, and is required since the

floating-point representation specifies an unsigned mantissa. This is

straightforward, and does not merit a pseudo-code representation; the

details can be seen in the Appendix.

The fifth stage is to get the result into the normalized form

described previously. The algorithm for doing this follows.

left-justify result mantissa bitspace by shifting left;
increment result exponent;
for every bit of a mantissa:

if result mantissa is not normalized:
if result mantissa msb is 0:

decrement result exponent;
(end if)

else
execute null-operation to synchronize;
(end else)

shift result mantissa left 1 bit;
(end if)

else
execute null-operation to synchronize;
(end else)

(end for)

The goal here is to find the most-significant digit of the

mantissa, and then make it the non-fractional digit and adjust the

exponent accordingly. The easiest way to do that with this PE

architecture is to examine the msb, so the first task is to left-justify

the space that the mantissa occupies. Note that the addition of two

binary values of a given size may produce a result that is larger by one

72

msb, so the left-justification must account for the additional mantissa

space. If the mantissa value actually fills the added msb position,

then the result exponent, being the larger of the two operand exponents,

is therefore one bit too small and must then be incremented. Similarly,

if the mantissa is smaller, the result exponent is too large and must

then be decremented. The best way to keep the loop simple is to make it

uniform by only using it for decrementing, and to increment the exponent

once before the loop and then start the loop at the additional mantissa

msb. This is done here.

The sixth and last stage is to encode the floating-point word and

handle the special cases of zero, overflow, and underflow. This is

straightforward, and does not merit a pseudo-code representation; the

details can be seen in the Appendix. The floating-point word is given

the value of zero when the previous normalization produces a zero non-

fractional digit for the mantissa and a negative exponent. It is given

the maximum magnitude when the result is determined not to be zero and

the result exponent exceeds its allotted number of bit positions.

Otherwise, the exponent and mantissa are shifted and masked into the

floating-point word. Finally, if the result is determined not to be

zero, the appropriate sign bit is shifted in. This concludes the

description of the floating-point addition/subtraction models "pc13" and

"pc14".

The simulations require 204 cycles for the 32-bit data word and

407 cycles for 64 bits. The load and decode stages require 10 cycles

for both models. Alignments require 100 cycles for the 32-bit word (24-

bit operand mantissa, including the non-fractional digit) and 216 cycles

for the 64-bit word (53-bit operand mantissa); the loop contains 4

73

cycles, and the non-loop cycles also number 4. The addition/subtraction

and complementation stages require a total of 8 cycles in both models.

Normalizations require 78 cycles for the 32-bit word (25-bit result

mantissa) and 165 cycles for the 64-bit word (54-bit result mantissa);

the loop contains 3 cycles, and the non-loop cycles also number 3. The

encoding stage requires 8 cycles for both models.

No way to significantly parallelize floating-point addition was

initially seen. A minor parallelization of alignment could be

accomplished by using a second PE to perform the exclusive-or in

parallel with the carry-word computation, saving 1 of the 4 cycles in

the alignment loop, but this was deemed to not be worth the effort at

this point. The problem appeared to be that the cycle-laden loops of

the alignment and normalization processes were inherently sequential.

However, after the completion of the floating-point multiplication

experiments, the concept of alignment and normalization as searches was

discovered, and this does permit parallelization. In particular, it was

noticed that alignment and normalization are searches for the particular

conditions that would allow the processes to stop. Unlike division,

while each iteration depends on the fact that the previous iteration

occurred, alignment and normalization do not depend on the results

produced by previous iterations because those results are well-known.

As such, parallel search techniques are applicable. The problems can be

divided equally (or as equally as possible) among the PEs, the PEs can

be individually set up as if the part of the search performed up to

their individual starting points had resulted in failure, and the

results of the first processor to find success can be used. The

beginnings of the parallelization of module "pc13" exist in module

74

"pc23" in file "pc23-3.v", started after the completion of the floating-

point multiplication experiment. Unfortunately, time did not permit the

completion of "pc23", much less of the experiment, which requires at

least six programs.

This conc ludes the development o f f loat ing-point

addition/subtraction. No studies of worst-case alignment or

normalization speedup techniques that might be used to provide

additional experiments was known to exist in the literature. The

figures presented above are tabulated in the "Analysis" section which

follows this one.

Floating-Point Multiplication

As can be seen from Table IV, eight models cover the spectrum of

floating-point multiplication experiments across data-word size and

number of PEs: modules "pc15" through "pc22 in files "pc15-3.v" through

"pc22-3.v". The multiplication algorithm is described by three stages:

load and decode the operands and add the exponents; multiply the

mantissas; and normalize, encode, and store the result. The stages are

discussed individually and in order below, and more detailed pseudo-code

representations are included where appropriate.

The first stage is to load and decode the operands, determine the

result sign, and handle the special value zero. This is

straightforward, and does not merit a pseudo-code representation; the

details can be seen in the Appendix. Note that since decoding the

mantissa is the same as for division, zero must be handled as a special

case for the same reason -- the OR-masking prepends an undesired 1 non-

fractional digit to it.

75

The second stage is to multiply the operands. This uses the same

shift-add procedure described for integer multiplication, with one major

difference. The goal of floating-point is to maintain the maximum

precision possible, and this is accomplished by retaining the largest

number of msbs that can fit into a mantissa space. Unfortunately, the

form of product chosen previously for integer multiplication retains

only the lsbs, making application of the previously-designed

microinstruction sequences to the floating-point programs practically

impossible. So the following algorithm was devised.

for every bit in a mantissa:
rotate mantissa #1 right 1;
if msb of rotated mantissa is 1:

add mantissa #2 to result mantissa;
(end if)

else
execute null-operation to synchronize;
(end else)

shift result mantissa right 1 bit;
(end for)

Note that because both operand mantissas have 1s in the msb

position (non-fractional digit), the size of the result mantissa must

either be the maximum possible, which is one bit larger than the size of

a mantissa, or one bit smaller, which is the same size as a mantissa.

This is makes retaining the bits shifted out of the result mantissa

unnecessary. Also, even though a full addition is performed, the carry-

in of the computed carry-word is always zero because the largest operand

is significantly smaller than a register, which is at most one bit

larger than the size of a mantissa.

The third and last stage is to normalize, encode, and store the

result. This is straightforward, and does not merit a pseudo-code

representation; the details can be seen in the Appendix. Note that

because only two sizes are possible for the result mantissa as discussed

76

previously, normalization is trivial. Special cases are also handled

here, just as with floating-point division: zero, overflow, and

underflow. The floating-point word is given the value of zero if either

of the two operands were previously determined to be zero or the result

exponent is negative. It is given the maximum magnitude when the result

is determined not to be zero and the result exponent exceeds its

allotted number of bit positions. Otherwise, the exponent and mantissa

are shifted and masked into the floating-point word. Finally, if the

result is determined not to be zero, the appropriate sign bit is shifted

in. This concludes the description of the single-PE floating-point

multiplication models, "pc15" and "pc16".

Because the loop represents the same shift-and-add method used for

integer multiplication, parallelism is applied in exactly the same

manner, by distributing the independent loop iterations as equally as

possible among a number of North-South-connected PEs. The discussion of

the parallelization of integer multiplication applies so well to the

floating-point experiments that repeating it entirely here is

unnecessary; the details are available from the module programs in the

Appendix. There are only a few minor differences that bear mention.

First, only the method relying on the variable-shift capability is used.

Second, the floating-point load-and-decode stage is parallelized in the

same manner as the integer sign-adjust stage, by distributing the

operands among the PEs. Third, because the size of the mantissa for the

64-bit format is not evenly divisible by 2, a small amount of complexity

was added to the multiple-PE 64-bit model programs. Lastly, operational

clarity is enhanced by placing the reduction of the different PE partial

sums in a separate stage before the normalize, encode, and store stage

77

instead of combining them. This concludes the description of the

multiple-PE floating-point multiplication models, "pc17" through "pc22".

 The simulation of the 32-bit 1-PE model "pc15" requires 144

cycles: 24 iterations of a 5-cycle loop and 24 other cycles. The 64-

bit version "pc16" requires 289 cycles, the only difference being that

the number of iterations increases to 53. The 32-bit 2-PE model "pc17"

requires 90 cycles: 12 iterations of the 5-cycle loop and 30 other

cycles. The increased overhead consists of 1 more cycle to set up the

shifted operand for the loop, and 5 cycles to reduce the PE partial

sums. The 64-bit version "pc18" requires 165 cycles; 26 iterations of

the loop cover 52 bits, while the 53rd is processed by a "special

iteration" performed by 5 post-loop microinstructions. The 32-bit 4-PE

model "pc19" requires 64 cycles: 6 iterations of the 5-cycle loop and

34 other cycles. The increased overhead consists of 4 more cycles for

the PE partial sum reduction. The 64-bit version "pc20" requires 104

cycles and 13 loop iterations. The 32-bit 8-PE model "pc21" requires 54

cycles: 3 iterations of the 5-cycle loop and 39 other cycles. Again,

the increased overhead consists of 4 more cycles for the PE partial sum

reduction. The 64-bit version "pc22" requires 74 cycles: 6 iterations

of the loop cover 48 bits, and the remaining 5 are processed by a

"special iteration" that is 1 cycle longer than that required in the 4-

PE case.

This concludes the development of floating-point multiplication,

as well as this section, "Arithmetic Performance". The results that

were mentioned are discussed and presented in various tabular and

graphical forms in the following "Analysis" section.

ANALYSIS

Overview

As previously indicated, the foremost goal if this research is to

characterize the suitability of this PE and system architecture for

speeding up arithmetic operations through the application of

parallelism. Note that arithmetic machine operations are, by nature,

fixed-size problems. Therefore, the two most informative forms of the

"speedup" of a given operation for this study are

S[P] = T[1] ÷ T[P]

and

S'[P] = S[P] ÷ P ,

where P is the number of PEs applied to the operation, T is the amount

of time (i.e., number of cycles) required to perform the operation given

the number of PEs applied to it, S is the total or absolute speedup

achieved by that particular number of PEs, and S' is the relative

portion of that speedup "contributed" by each PE in the group. The

ideal situation is where every PE applied to a problem justifies its

cost by providing a directly proportional increase in performance; in

other words, P PEs should ideally perform a given operation in 1/Pth the

number of cycles required by 1 PE. Absolute speedup does not show this

performance per price ratio, only the total performance gain, so the two

forms of speedup are used to yield as much information as possible.

Note however that factors such as the distribution of overhead among

multiple PEs technically allows speedup greater than the ideal, thereby

clouding the definition of "ideal" and making it more subjective.

79

This section presents and discusses the results of the arithmetic

performance experiments in tabular and graphical form. The order is the

same as was used previously: integer multiplication, integer division,

floating-point addition/subtraction, and floating-point multiplication.

Integer Multiplication

The results of the integer multiplication experiments are listed

in Table VI.

Table VI

Integer Multiplication Performance

Number
of PEs

Variable
Shift

Loop
Cycles

Other
Cycles

Absolute
Speedup

Relative
Speedup

1

2
4
8

2
4
8

N/A

No
No
No

Yes
Yes
Yes

4 14214

1156 19
10 27 107
18 40 112

834 19
554

4
23

4428

Total
Cycles

*
*

1. 00 1. 00

. 621. 23
1. 33 . 33
1. 26 . 16

1. 71 . 86
2. 58 . 65
3. 23 . 40

* calculated

1

2
4
8

2
4
8

N/A

No
No
No

Yes
Yes
Yes

4 14 270

2116 19
10 27 187
18 40 184

1474 19
874

4
23

6028

*
*

1. 00 1. 00

. 641. 28
1. 44 . 36
1. 47 . 18

1. 84 . 92
3. 10 . 76
4. 50 . 56

Word
Width

32

64

32
32
32

32
32
32

64
64

64

64
64
64

The column headings are self-explanatory. Note the cases marked

with asterisks are those which were not actually modeled but were

accurately calculated as described in the previous discussion. Note

also that as previously mentioned, the figures for absolute speedup best

quantify the overall performance gain, while those for relative speedup

best indicates the ratio of performance to cost achieved.

Composite graphs of the absolute and relative speedups appear in

Figures 14 and 15, respectively.

80

864200
0

2

4

6

8

Ideal
32-Bit Fixed-Shift
32-Bit Variable-Shift
64-Bit Fixed-Shift
64-Bit Variable-Shift

Number of PEs

Absolute
Speedup

Figure 14. Absolute Speedup of Integer Multiplication

864200

0.000

0.250

0.500

0.750

1.000

Ideal
32-Bit Fixed-Shift
32-Bit Variable-Shift
64-Bit Fixed-Shift
64-Bit Variable-Shift

Number of PEs

Relative
Speedup

Figure 15. Relative Speedup of Integer Multiplication

81

A number of observations can be made from these figures. First,

it is readily apparent that the ability to shift more than a single bit

position in a cycle is vital to parallelizing multiplication, as was

discussed previously with the performance. This is evident both from

the plots and from the number of loop cycles listed in the table.

Second, the relationship between the loop and the non-loop cycles is

clearly visible from both the difference between 32- and 64-bit

performance curves and the dropoff of the absolute speedup curves. As

expected from Amdahl's Law [24], distributing the loop iterations among

a larger number of PEs makes the slowly-growing number of non-loop

cycles more significant. Third, the previous performance discussion

established that adding a carry-operand inversion feature would save 4

cycles on most of the programs, and it can be seen from the table that

the variable-shift, 32-bit 4- and 8-PE configurations and the variable-

shift 64-bit 8-PE configuration would show almost a 10% improvement in

performance.

It can be reasoned that these configurations are fairly close to

optimal for this PE architecture. The architecture prohibits a

sufficient amount of work from being done with a loop of less than 3

cycles, and these loops (with the variable-shift feature) take only 4.

Due to the simplicity of the algorithm, it can be fairly stated that no

change in algorithm is likely to produce significantly better

performance. Logically, the application a number of PEs greater than

the number of loop iterations to the operation cannot further increase

performance, and the plots indicate that the maximum performance is

unlikely to be significantly greater than that achieved by, perhaps, 4

PEs for the 32-bit data word and 8 PEs for 64 bits. Therefore, the only

82

likely source of significant additional speedup is architectural change.

The carry-operand inversion feature is one such change, but one that

only has significant impact when more PEs are used. Another is the

removal of the logic/carry exclusion rule, i.e., using the latest PE

design described previously. This may allow an algorithm to be designed

with a smaller loop. If so, that would almost certainly be the

performance limit for integer multiplication using this type of PE.

Integer Division

The results of the integer division experiments are listed in

Table VII.

Table VII

Integer Division Performance

Number
of PEs

Loop
Cycles

Other
Cycles

Absolute
Speedup

Relative
Speedup

Total
Cycles

Word
Width

1
2

6 21321
1725 12

1. 00 1. 00
. 621. 24

32
32

1
2

6 21 405
3325 12

1. 00 1. 00
. 611. 22

64
64

1
2

6 21725
1755 15

32
32

1
2

6 25 409
3355 15

64
64

Type

R
R

NR
NR

R
R

NR
NR

"Type" refers to the division algorithm used, as described

previously: "R" for restoring, and "NR" for non-restoring. The

speedups for the non-restoring technique are not listed because they are

very similar to the restoring case, and would serve little other than to

cloud the discussion. Also, as mentioned previously, the way that the

algorithms were implemented is deemed undesirable, so the speedup values

are not of much interest.

Composite graphs of the absolute and relative speedups appear in

Figures 16 and 17, respectively.

83

210
0.0

0.5

1.0

1.5

2.0

Ideal
32-Bit

64-Bit

Number of PEs

Absolute
Speedup

Figure 16. Absolute Speedup of Integer Division

210
0.000

0.250

0.500

0.750

1.000

Ideal
32-Bit
64-Bit

Number of PEs

Relative
Speedup

Figure 17. Relative Speedup of Integer Division

84

With only 2 PEs and no scalable parallelization method, the graphs

are of limited use. They only show the limited effects of reducing the

loop size by 17%, and are presented mostly for completeness.

It is clear that architectural adjustments could improve only the

1- and 2-PE cases but still not enable the application of scalable

parallelism. For example, if the PE had a means of moving data from a

selectable-source register (particularly the shiftable EAST register) to

one of the main logic input registers (register IN1 in this case) in a

single cycle, then the loop in the 2-PE restoring model could be reduced

by one. This can be seen from module "pc9" in file "pc09-.v" in the

Appendix. Also, in the same manner as multiplication, a division

algorithm written for the PE design that eliminates the carry/logic

exclusion rule may be more efficient. The lack of parallelizability,

however, originates from the iteration dependence of the algorithm, and

will not be affected by these changes.

A brief investigation was made into other division algorithms.

Non-restoring division was found to be unhelpful mostly because it is

actually a simple variation of the restoring algorithm, and offers no

new methods. Cavanagh [25] describes a number of division methods. SRT

(Sweeny, Robertson, Tocher) division works by skipping sequences of 1s

or 0s, but the speedup is a result of the operand characteristics, a

property not allowed in the SIMD paradigm since all operations must use

the same number of cycles. The only way to achieve that with SRT is to

assume worst case, and this provides no speedup. Other approaches to

division uses multiplication, addition, and subtraction to converge on a

result. Divisor Reciprocation, as its name implies, computes the

reciprocal of the divisor using some iterative method such as Newton-

85

Rhapson Iteration or Goldschmidt's Algorithm [24] and then obtains the

result by multiplying it with the dividend. Division Through

Multiplication [27] is a method that uses a lookup table to iteratively

provide fractional values to multiply with both the divisor and the

dividend. It may be that these methods could provide the parallelism

sought. However, these methods are all relatively complex, and a number

of issues must be addressed before their usefulness could be

ascertained. For example, it is unclear with these methods what the

worst-case cycle count is, or even how to go about making such a

determination, yet this information is vitally important to SIMD design.

Also, they all contain some use of fractional binary numbers, and it

remains to be determined what manner of overhead is required to track

the decimal points, as well as what the cost of any additional required

precision might be. It is apparent that integer division is an entire

research area unto itself, and so it was elected to proceed to the study

of floating-point arithmetic.

Floating-Point Addition/Subtraction

The results of the floating-point addition/subtraction experiments

are listed in Table VIII.

Table VIII

FP Addition/Subtraction Performance

1 2043332

1 33 40764

3

3

4

4

Number
of PEs

Other
Cycles

Total
Cycles

Word
Width

Normalization Loop
Cycles—Iterations

Alignment Loop
Cycles—Iterations

24 25

53 54

86

Since the experiment is incomplete, no particularly significant

analysis is possible. One observation is that floating-point

addition/subtraction requires almost exactly the same number of cycles

as integer division, a remarkable coincidence. Another observation,

this one not related to performance but to architecture, is that in

order to perform floating-point operations, constants are required for

masking the floating-point word to decode and encode its constants. In

these models, the required constants are stored in PE memory, but there

are also other options available to consider if necessary. For example,

another bit can be added to the instruction word to increase the number

of registers selectable as data sources, and some of them can be made to

contain the necessary constants and be read-only. Alternately,

specialized hardware could be added to perform the encoding and decoding

function, although this would require a more significant modification of

the existing architecture in order to interface with it. Lastly, it can

be reasoned that the application of parallel search techniques to the

alignment and normalization stages as previously discussed should result

in a high level of scalability, extremely similar to that shown by the

performance curves of integer and floating-point multiplication. They

should only be slightly worse in magnitude due to the dual loops and the

greater amount of overhead.

Floating-Point Multiplication

The results of the floating-point multiplication experiments are

listed here in Table IX.

87

Table IX

FP Multiplication Performance

Number
of PEs

Loop
Cycles

Other
Cycles

Absolute
Speedup

Relative
Speedup

1 5 14424

Total
Cycles

1. 00 1. 00

Word
Width

32
2
4
8

905 30
5 34 64
5 39 54

. 801. 60
2. 25 . 56
2. 66 . 33

32
32
32

1 5 24 289 1. 00 1. 0064
2
4
8

1655 35
5 39 104
5 44 74

. 881. 78
2. 78 . 69
3. 91 . 49

64
64

64

Loop
Iterations

24

53

12

26

6

13

3

6

Note that these results bear a striking resemblance to those

obtained for the integer multiplication (with variable-shift). This is

because floating-point multiplication is really just integer

multiplication with fewer loop iterations but more "overhead". Because

of this, the previous analysis of integer multiplication is equally

applicable to floating-point. It was unfortunate that the type of

product selected for integer multiplication, the least-significant word,

was not the one required for floating-point; otherwise, the development

would have required noticeably less effort. Also note that use of the

carry-operand inversion feature for integer multiplication would

increase the validity of the comparison, and would widen the difference

between integer and floating-point performance by improving the 4- and

8-PE model cycle counts significantly, as discussed previously.

Finally, note that because the size of the floating-point mantissa is

smaller than that of the integer word, the parallelization limit is

reached with fewer PEs. In fact, since the 8-PE 32-bit multiplication

(as well an imagined 16-PE 64-bit multiplication) require only 3 loop

88

iterations, a cycle or two might be saved by unrolling the loop and

combining microinstructions, but this is not known for certain.

Composite graphs of the absolute and relative speedups appear in

Figures 18 and 19, respectively.

Again, these results are extremely similar to those obtained with

integer multiplication. In fact, close comparison reveals that these

curves are only slightly worse, as would be expected by the modification

of integer multiplication to require fewer loop iterations and more

overhead. It can be maintained with the arguments presented for integer

multiplication that these configurations are fairly close to optimal for

this PE architecture. It is also possible that using the more current

PE design described previously which removes the logic/carry exclusion

rule could save a number of clock cycles, producing optimal

configurations with even higher performance.

864200
0

2

4

6

8

Ideal
32-Bit
64-Bit

Number of PEs

Absolute
Speedup

Figure 18. Absolute Speedup of FP Multiplication

89

864200
0.00

0.25

0.50

0.75

1.00

Ideal
32-Bit
64-Bit

Number of PEs

Relative
Speedup

Figure 19. Relative Speedup of FP Multiplication

This concludes the analysis of floating-point multiplication, and

also of the "Analysis" section. The next section concludes this work.

CONCLUSION

In this paper, a PE for a massively-parallel, rectangular-mesh-

connected, method-reconfigurable, MSIMD computer, and configurations of

PEs for performing various arithmetic operations, were designed and

modeled. The instruction cycle of the PE can be completed in one clock

cycle, so it is fast. The PE design is based on a pre-existing 1-bit-

wide PE design, so it retains the advantages of being simple, small, and

inexpensive. The width of the PE is the same as that of the data word,

so it provides a convenient view for the application programmer.

Facilities are incorporated which increase the performance of word-wide

integer and floating-point arithmetic. Performance results were

obtained and analyzed for configurations of 1, 2, 4, and 8 PEs, with 32-

and 64-bit data word widths, applied to integer multiplication and

division and floating-point addition/subtraction and multiplication.

The modeling was accomplished with the behavioral component of the

Verilog HDL.

The performance results showed that these arithmetic operations

could be implemented efficiently with this PE design. Furthermore, they

demonstrated that significant speedup could be achieved, a direct result

of the parallelization afforded by the MSIMD paradigm through method-

reconfigurability. Therefore, it can be concluded that a method-

reconfigurable MSIMD architecture has a significant probability of

providing a high-performance computer, one which is especially well-

suited to applications involving large arrays of homogeneous data, at a

lower cost than a comparable MIMD machine.

91

The most immediate continuation of this work would be to repeat

the experiments without the carry/logic exclusion rule, as discussed in

the Overview of the Arithmetic Performance section. This has the

possibility of reducing the number of loop cycles and thereby

significantly improving performance. Also, the floating-point

addition/subtraction experiments should be completed, and other

floating-point arithmetic operations such as division, logarithm,

exponent, square-root, etc. should be investigated. Additional research

into speeding up integer division could also prove beneficial.

Useful information might be provided by investigating

configurations for the original MSIMD target architecture shown in

Figure 11 as opposed to the alternate architecture shown in Figure 12

that was actually used. The total cycle counts would increase

dramatically since the number of cycles required for an N-way branch

would increase from that of the longest branch to N times that of the

longest branch, but significant speedup could still be expected. For

the alternate architecture, the disable feature can be removed since its

function can be fulfilled by null-operations. However, some

microprogramming difficulty was found to result from the fact that

during a null-operation, the OUT register must be overwritten, so adding

a feature to disable writing to the OUT register is worth consideration.

This is not as much of a problem with the selectable-destination

register because the source and destinations can be specified to be the

same and the operation can be specified to be the identity, thus

performing a true null-operation. Another feature that should be

considered is the ability to move data from any register to the IN1/IN2

registers and/or memory in a single clock cycle. The current design

92

requires two cycles, one to move data from the source register to the

OUT register through a Boolean logic unit, and a second to move it from

the OUT register to IN1/IN2/memory. This might not only increase

performance by reducing the cycle count, but could possibly free that

Boolean logic unit to perform useful computation; this issue remains to

be investigated.

After completion of the behavioral study, the next task would be

to undertake a structural study. This could be performed using the

structural component of Verilog. The microcontrollers and

microinstruction memories would have to be added to the PE models, as

well as at least one additional addressing mode, since direct addressing

does not provide sufficient flexibility for other, non-arithmetic

processor operations. After studying individual and configured PE

operations, the master controller and the global data router network

could be modeled, and the entire computer system could be studied.

Should the results of the structural research be positive, a hardware

implementation could finally be considered.

248

REFERENCES

 1. Flynn, M. J.: "Some Computer Organizations and their
Effectiveness", IEEE Transactions On Computers, vol. C-21, no. 9,
September 1972.

 2. Barnes, G. H., R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick,
R. A. Stokes: "The ILLIAC IV Computer", IEEE Transactions on
Computers, vol. 17, no. 8, August 1968.

 3. Hockney, R. W., C. R. Jesshope: Parallel Computers, Adam Hilger
Ltd., Bristol, 1981.

 4. Batcher, K.: "Design of a Massively Parallel Processor", IEEE
Transactions on Computers, vol. 29, no. 9, September 1980.

 5. Hillis, W. D.: The Connection Machine, MIT Press, Cambridge,
1985.

 6. Beetem, J., M. Denneau, D. Weingarten: The GF11 Parallel
Computer, in J. J. Dongarra: Experimental Parallel Computing
Architectures, North-Holland, Amsterdam, 1987.

 7. Almasi, G. S., A. Gottlieb: Highly Parallel Computing,
Benjamin/Cummings, Redwood City, California, 1989.

 8. Kartashev, S. I. and S. P.: "Dynamic Architectures: Problems and
Solutions", IEEE Computer, vol. 11, no. 7, July 1978.

 9. Kartashev, S. I. and S. P.: :"A Multicomputer System with Dynamic
Architecture", IEEE Transactions on Computers, vol. C-28, no. 10,
October 1979.

10. Snyder, L.: "An Inquiry into the Benefits of Multigauge Parallel
Computation", IEEE Proceedings of the International Conference on
Parallel Processing, 1985.

11. Miller, R., V. K. Prasanna-Kumar, D. I. Reisis, Q. F. Stout:
"Parallel Computations on Reconfigurable Meshes", I E E E
Transactions on Computers, vol. 42, no. 6, June 1993.

12. Ligon, W. B., III: An Empirical Evaluation of Architectural
Reconfigurability, doctoral thesis, College of Computing, Georgia
Institute of Technology, Atlanta, August 1992.

13. Ligon, W. B., III, U. Ramachandran: "Evaluating Multigauge
Architectures for Computer Vision", Journal of Parallel and
Distributed Computing, vol. 21, no. 3, June 1994.

14. Snyder, L.: "Introduction to the Configurable, Highly Parallel
Computer", IEEE Computer, vol. 15, no. 1, January 1982.

249

15. Siegel, H. J. and L. J., F. C. Kemmerer, P. T. Mueller, Jr., H. E.
Smalley, Jr., S. D. Smith: "PASM: A Partitionable SIMD/MIMD
System for Image Processing and Pattern Recognition", IEEE
Transactions on Computers, vol. C-30, no. 12, December 1981.

16. Sejnowski, M. C., E. T. Upchurch, R. N. Kapur D. P. S. Charlu, G.
J. Lipovski: "An Overview of the Texas Reconfigurable Array
Computer", Proceedings of the 1980 AFIPS National Computer
Conference, vol. 49, AFIPS Press, Arlington, Virginia, May 1980.

17. Choudhary, A. N., J. H. Patel, N. Ahuja: "NETRA: A Hierarchical
and Partitionable Architecture for Computer Vision Systems", IEEE
Transactions on Parallel and Distributed Systems, vol. 4, no. 10,
October 1993.

18. Batcher, K. E.: "STARAN Parallel Processor System Hardware",
Proceedings of the 1974 AFIPS National Computer Conference, vol.
43, AFIPS Press, Montvale, New Jersey, May 1974.

19. Maresca, M.: "Polymorphic Processor Arrays", IEEE Transactions on
Parallel and Distributed Systems, vol. 4, no. 5, May 1993.

20. Baron, R. J., L. Higbie: Computer Architecture Case Studies,
Addison-Wesley, Reading, Massachusetts, 1992.

21. Ligon, W. B., III, C. Subramanyam: "A Bit-Serial SIMD Processing
Element", unpublished, College of Computing, Georgia Institute of
Technology, September 1991.

22. Thinking Machines Corporation: The Connection Machine CM-5
Technical Summary, Thinking Machines Corporation, Cambridge,
October 1991.

23. Cadence Design Systems: Verilog-XL Reference Manual, ver. 1.6,
Cadence Design Systems, March 1991.

24. Hennessy, J. L, D. A. Patterson: Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, San Mateo, California,
1990.

25. Cavanagh, J. J. F.: Digital Computer Arithmetic, McGraw-Hill, New
York, 1984.

26. Koren, I.: Computer Arithmetic Algorithms, Prentice Hall,
Englewood Cliffs, New Jersey, 1993.

27. Flynn, M. J.: "Very High-Speed Computing Systems", Proceedings of
the IEEE, vol. 54, no. 12, December 1966.

